
Resource Allocation in Terrestrial and
Non-terrestrial Networks for Sixth

Generation Mobile Communications

August 2024

Go Otsuru



A Thesis for the Degree of Ph.D. in Engineering

Resource Allocation in Terrestrial and
Non-terrestrial Networks for Sixth

Generation Mobile Communications

August 2024

Graduate School of Science and Technology
Keio University

Go Otsuru



Abstract

As terrestrial networks (TNs) and non-terrestrial networks (NTNs) continue

to evolve, there is a growing trend toward their integration in next-generation

mobile communication systems. The integrated network promises enhanced

connectivity that spans from the ground to the sky and even into space.

To meet a large amount of traffic demand by a vast number of worldwide

internet-of-things (IoT) devices connected to the network, it is crucial to

increase system throughput to reduce a cost per bit especially under a con-

dition of limited frequency resources. Multiple access (MA) schemes have

been traditionally introduced to the TN and the NTN because a spectrum

efficiency (SE) is improved through multiplexed signals in various domains.

Thus, this thesis focuses on resource allocation schemes for TNs and NTNs

and evaluates their performance in terms of throughputs and a number of

accessible users.

Chapter 1 introduces the MA schemes, user scheduling schemes in the

TN, and resource allocation schemes in the NTN and the motivation of the

research.

In Chapter 2, the scheduling schemes in distributed antenna transmission

(DAT) is investigated. In DAT, a proportional-fair (PF) scheduling shows

higher system throughput and fairness among user equipments (UEs) than
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a round-robin (RR) scheduling and a Max C/I scheduling. However, the

scheduling schemes in DAT face a challenge related to computational com-

plexity. This complexity arises because the feedback overhead at a central

unit (CU) becomes immense due to a large number of transmission points

(TPs). The proposed scheme is based on the RR scheduling that has lower

computational complexity. An initial phase of a sequence of the RR schedul-

ing is sequentially selected for each macro-cell to maximize the estimated sys-

tem throughput. In the proposed RR scheduling, the inter-cell interference

can be taken into account because the CU collects the initial phases of the

macro-cells. Four criteria for the initial phase selection are proposed; a full

search, a random selection, a maximum selection, and a selection with Gibbs

sampling. Numerical results obtained through a computer simulation show

that the maximum selection reaches the highest system throughput and ef-

fectively mitigates the inter-cell interference. However, intra-cell interference

is not taken into account in this scheme. To overcome this problem, a UE set

selection for the allocation sequence of the RR scheduling is also proposed.

The UE sets that suffer from severe intra-cell interference are eliminated at

the CU based on Q-values. Numerical results obtained through the computer

simulation show the proposed RR scheduling is superior to a weighted-PF

scheduling in restricted realms in terms of the computational complexity, the

fairness among UEs, and the system throughput.

In Chapter 3, the resource allocation for a next-generation high through-

put satellite (HTS) is investigated. The next-generation HTS is equipped

with a digital channelizer that realizes flexible frequency resource sharing

with adjacent beams. The allocation bandwidth for a current beam is influ-
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enced by that for a preceding beam. Therefore, the frequency resource al-

location problem is modeled as a beam-indexes-series finite Markov decision

process (MDP) in this dissertation. The problem is solved with a Q-learning

algorithm. The proposed scheme can reduce the computational complexity

through sufficient amount of prior training. The proposed scheme intro-

duces multiple evaluation functions; a system throughput maximization, the

number of allocated UEs maximization, and a combined evaluation function.

Numerical results through the computer simulation show the proposed fre-

quency resource allocation scheme with the Q-learning achieves sub-optimum

solution.

Chapter 4 summarizes the results of each chapter and concludes this

dissertation.
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Chapter 1

General Introduction

High Importance

Spectrum efficiency
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Novel function in B5G/6G
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Novel function in B5G/6G

Figure 1.1: Requirements of beyond 5G/6G [2, 3].

Beyond 5G (B5G)/6G is a next-generation information and communica-
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tion infrastructure and is expected to be an open platform that can grow

sustainably in response to increasingly diverse use cases in the future [1].

The requirements of 6G are shown in Figure 1.1 [2, 3]. In addition to the

advancement of characteristic features in 5G such as low latency, wide cover-

age, high connectivity, and high data rate, new features in 6G are expected

to be created [1–3]. Not only humans but also a huge amount of things are

connected on the network, and it is essential to reduce the unit price per bit

and power consumption in order to cope with the traffic that is expected to

increase in the future with limited resources. In addition, a communication

path with high security and redundancy even in an emergency situation is im-

mediately constructed by autonomous network control and device-to-device

communication.

Figure 1.2: Non-terrestrial network [1].

Integration of a terrestrial network (TN) and a non-terrestrial network
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(NTN), which have separately evolved up to now, is one of the significant re-

quirements of 6G in order to realize flexible systems where people and devices

can communicate each other wherever they are on the ground, in the sea, in

the air, and even in space. The concept of the NTN is shown in Fig. 1.2 [1].

Third Generation Partnership Project (3GPP), a standardization project for

a mobile communication system, had started to study the roles, deployment

scenarios, and channel models for the NTN in a new radio (NR) system in

the context of integration of the TN and the NTN in TR 38.811 of Release

15 [4, 5]. Afterwards, the minimum requirement of enabling NR support for

NTN was clarified in TR 38.821 of Release 16 [6]. the This includes a NTN-

based NT-RAN (radio access network) architecture, Layer 1 issues defined

in OSI reference model, radio protocols, and interface protocols. In Release

17, in addition to high altitude platform systems (HAPSs), the necessities

of low earth orbiting (LEO) satellites and geosynchronous earth orbiting

(GEO) satellites were emphasized and the normative specifications including

the NTN were released.

The integration of the TN and the NTN proceeds, as demands for better

communication extends beyond the ground to the sky above. For exam-

ple, the Japanese government proposed the concept of Society 5.0 in the 5th

Science and Technology Basic Plan [7,8]. Society 5.0 is defined as “A human-

centered society that balances economic advancement with the resolution of

social problems by a system that highly integrates cyberspace and physi-

cal spaces.” The huge amount of information from internet-of-things (IoT)

devices in physical spaces are analysed with artificial intelligence (AI) in cy-

berspace, and the results of the analysis are fed back to the physical spaces to

3



bring novel value to industry and society. The sensors distributed everywhere

in physical spaces are required to upload high-precision and high-sampling

data to a cloud server because more realistic information reflections from

physical spaces to cyberspace are essential for the accurate simulation/emu-

lation in cyberspace [9, 10].
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1.1 Multiple Access Technologies

In this section, multiple access (MA) schemes are described, which are intro-

duced to wireless communication systems in terrestrial and non-terrestrial

network to achieve higher system throughput. Moreover, the necessity for

resource allocation technologies have been increased as the complicated and

flexible MA schemes emerge [11]. MA schemes are inevitable for maximizing

the system throughput by multiplexing signals without interference.

1.1.1 Frequency Division Multiple Access (FDMA)

Power �

Guard Band

Frequency �

Time �

�2

�3

�1

Figure 1.3: Frequency division multiple access (FDMA).

Frequency division multiple access (FDMA) is a well-known and typical

scheme as a conventional one. The signals are upconverted to different chan-

nels upon modulation so that they do not interfere with each other. The
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modulated signal upconverted to carrier frequency fc has power spectrum

spread around fc. The width of the spectrum is called occupied bandwidth.

The occupied bandwidth is depend on the transmission rate, and wider band-

width enables higher rate communication.

The principle of FDMA is shown in Fig. 1.3. Each channel is allocated

over frequency axis in order to make no overlap to adjacent channels. Assign-

ment in frequency axis is easily changed by using another carrier frequency.

At a receiver side, desired signal is extracted and demodulated by adopt-

ing the band path filter (BPF) whose center frequency of the pass band is

coordinated to the center frequency of the carrier. The interval of the car-

rier frequencies is called channel separation, and the separation between the

adjacent channels is called a guard band. In order to efficiently utilize the

frequency bandwidth, the channel separation should be set to the occupied

bandwidth. However, the out-of-band radiation owing to the roll-off rate

of the filter requires the guard band between channels, which reduces the

spectrum efficiency.

FDMA is a widely used scheme in satellite communication systems be-

cause of the ease in the configuration and the control of links. However, there

is a problem of FDMA in the satellite communication. In FDMA, many sig-

nals with different center frequencies are amplified simultaneously in the a

satellite transponder. When signals with two different carrier frequencies,

f1 and f2, that are close to that of the desired signal with the frequency fd

are input to the satellite transponder, third order intermodulation distor-

tion occurs at the frequencies, 2f1 − f2 and 2f2 − f1, by the non-linearity

of an radio circuit amplifier. These interferences are difficult to remove by
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the BPF if they are close to the frequency of the desired signal. In order to

alleviate the interference of the third intermodulation distortion, the input

signal should be fully backoffed to reduce the influence of the non-linearity of

the satellite transponder or the carrier frequency allocated to signals should

be considered.

1.1.2 Time Division Multiple Access (TDMA)

Power �

Guard Time

Frequency �

Time �

Figure 1.4: Time division multiple access (TDMA).

Time division multiple access (TDMA) emerged as digital processing

technologies evolves. Compared to FDMA, TDMA is a scheme suitable for

digital modulation and can reduce the complexity of transmitters and re-

ceivers. In TDMA, digital signals on multiple channels are transmitted by

dividing into time slots on the time axis. In order to prevent inter-symbol

interferences (ISIs), a signal distortion caused by the overlap of signals in
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the adjacent time slots, a guard time (GT) is introduced between the signals

as shown in Fig. 1.4. The GT with a longer time interval improves symbol

robustness while the transmission efficiency of actual data is reduced. It is

important to optimize the length of the GT.

TDMA is also adopted in satellite communication systems. The delays

in NTN systems depend on the geographic location of the ground station

(GS) and the orbital position of the NTN nodes. In another words, the

propagation distance is very long and constantly fluctuates especially in the

non-geostationary satellite. TDMA frame is composed of a reference burst

and multiple data bursts. The GSs refer to the reference burst for the satellite

transponder to receive transmitted burst in the specific time slot.

1.1.3 Code Division Multiple Access (CDMA)

Power �

Frequency �

Time �

Figure 1.5: Code division multiple access (CDMA).
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Code division multiple access (CDMA) realizes the multiplexing of multi-

ple signals in spread code domain by different means from those of FDMA in

frequency domain and TDMA in time domain. Spread spectrum communi-

cation is the fundamental scheme of CDMA. In the CDMA system, digitally

modulated signals are spread and multiplexed by spreading codes that have

a much wider bandwidth than the original signal. Spread spectrum commu-

nication systems are robust to noise and interference.

The specific signal can be demodulated from the multiplexed received

signals with different spreading codes, which is the unique characteristic of

CDMA. The multiplexing concept of CDMA is shown in Fig. 1.5. Unlike

FDMA or TDMA that separates signals by frequency or time domains, the

CDMA signals are transmitted in the same frequency and time slots.

Spread spectrum multiple access (SSMA) including CMDA as well as

frequency hopping are used in the satellite communications. In order to

spread or identify the GSs, spreading codes are used. The merits of SSMA

in satellite communications are as follow;

• High non-disclosure and confidentiality

• Asynchronous random access

• High resistance to interference

• Compatibility with multibeam satellites and other NTN systems

On the other hand, the following demerits exist

• Non-linearity of satellite transponder
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Figure 1.6: Orthogonal frequency division multiple access (OFDMA).

• Low spectrum efficiency compared to TDMA and FDMA

• Complicated device composition

• Hard carrier detection because of low power density of desired signal

1.1.4 Orthogonal Frequency Division Multiple Access
(OFDMA)

Orthogonal frequency division multiple access (OFDMA) utilizes orthogonal

frequency division multiplexing (OFDM) that transmits multiple modulated

signals on orthogonal carriers called subcarriers. The relation among carriers

are based on the well-known orthogonality of the sine wave. Suppose that,

T is the symbol duration and fsc is the subcarrier separation, the following

relations are hold;
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∫︂ T

0

cos(2πmfsct) cos(2πnfsct)dt =

{︄
T
2

(m = n)

0 (m ̸= n)
, (1.1)

∫︂ T

0

sin(2πmfsct) sin(2πnfsct)dt =

{︄
T
2

(m = n)

0 (m ̸= n)
, (1.2)

∫︂ T

0

cos(2πmfsct) sin(2πnfsct)dt = 0, (1.3)

where m and n are integers and T = 1/fsc. When the number of subcarriers

is Nsc, the total frequency bandwidth of OFDM singal is Nscfsc.

In OFDMA, resource blocks (RBs) is the available unit of resource alloca-

tion. Users are assigned to each RB that consists of 12 subcarriers in a Long

Term Evolution (LTE) system. In this way, the amount of user assignment

information can be reduced.
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1.2 Resource Allocation

The more complicated resource allocation scheme arises, the needs of the

resource allocation and scheduling schemes are more significant. For the

mobile communication systems in the TN, several resource allocation schemes

in OFDMA such as max-C/I scheduling, round-robin (RR) scheduling, and

proportional fair (PF) scheduling are introduced [12]. For the satellite system

in the NTN, It is important to properly utilize the limited on-board satellite

resources. Power allocation, digital beamforming (DBF), and beam hopping

using DBF technique are described in this section. A digital channelizer that

is expected to be used in high-throughput satellites is also introduced.

1.2.1 User Scheduling in Terrestrial Network

Power �

Delay ��

Direct Wave

Delay spread

Impulse response

Multipath fading channel

Frequnecy �

Power �

Fourier Transform

Inverse Fourier Transform

Figure 1.7: Delay profile of signals with multipath and multipath fading
channel and its frequency response.

Multipath fading occurs when a transmitted signal reaches a receiver side

through two or more paths with different delays. An example of the delay

profile of a multipath channel and its corresponding frequency response is

shown in Fig. 1.7. The multipath phenomenon arises due to the reflection,
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diffraction, or scattering of the signals by surrounding objects such as build-

ings. A signal transmitted from a single source arrives at a receiver through

different propagation paths. Consequently, the signals with different paths

experience different propagation delays, propagation losses, and phase offsets

at a receiver side.

• Signals with different delays can arise ISIs because the delayed waves

can be received at a timing exceeding the symbol length including a

guard interval.

• Phase offsets can cause constructive/in-phase or destructive/opposite-

phase interference when signals through different paths are received.

OFDMA have longer symbol length than that of single-carrier modulation

system and the longer symbol duration makes OFDM symbols more tolerant

to ISI caused by delayed multipath signals. However, frequency selective

fading caused by the multipath signals is inevitable, which means a user

throughput greatly depends on assigned RBs. That is the resource allocation

problem in OFDMA.
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1.2.1.1 Max C/I Scheduling

Channel quality for subcarrier �

Frequency �

Time �

⋮

⋮

UE with the highest C/I is allocated

UE A

UE B

Allocated channel

RB allocated to UE A

RB allocated to UE B

Frequency �

UE A

UE B

Figure 1.8: Max C/I scheduling.

In max-C/I scheduling, a user equipment (UE) that achieves the highest

throughput are allocated to each RB. The allocated UE is specified as

imax = arg max
i

Ri (1.4)

where Ri is the instantaneous throughput of the i-th UE. The other UEs with-

out the highest throughput are not allocated and the cumulative throughputs

of UEs are not taken into account as shown in Fig. 1.8. Therefore, max-C/I

scheduling compromises the fairness among UEs.
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1.2.1.2 Round-Robin Scheduling

Channel quality for subcarrier �
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RB allocated to UE B
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Frequency �

Time �
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Figure 1.9: Round-robin (RR) scheduling.

RR scheduling allocates UEs sequentially to RBs without taking channel

states into account as shown in Fig. 1.9. Therefore, the system throughput

is lower than the other scheduling schemes while the fairness among UEs

is better than that of max-C/I scheduling though it is not as good as PF

scheduling. PF metric is calculated to each UE on each RB in PF scheduling.

RR scheduling demands lower complexity as compared with PF scheduling.
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1.2.1.3 Proportional Fair Scheduling

Channel quality for subcarrier �
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UE A
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RB allocated to UE B

UE A

UE B

Frequency �
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Figure 1.10: PF scheduling.

In PF scheduling, the UE allocated to a RB is given as

iPF = arg max
i

Ri

Ri
¯ , (1.5)

where Ri is the instantaneous throughput for the i-th UE and Ri
¯ is the av-

erage throughput for the i-th UE. PF scheduling allocates UEs that achieve

higher instantaneous throughput on the concerning RB or low average through-

put as shown in Fig. 1.10. In this way, the fairness among UEs are maintained

in PF scheduling.
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1.2.2 Resource Allocation in Satellite System

Unlike the resource allocation for the terrestrial network explained in Sec-

tion 1.2.1, a propagation in a fixed satellite service (FSS) environment can

be treated as the free space propagation model in a line-of-sight (LOS) envi-

ronment. The free space propagation loss, Ld, is given as

[Ld] = 10 log

(︃
4πd

λ

)︃2

, (1.6)

where [ ] means the Logarithmic notation, d is the distance from a satel-

lite to an UE, and λ is a wavelength for a carrier frequency. For a mobile

satellite service (MSS), received signal power fluctuates due to shadowing

and multipath fading in addition to the free space propagation loss. The

received signal power fluctuates due to surrounding reflectors and scatterers

of a receiver such as trees and buildings. They cause the multiple signals

with different delays. The macro-scale variation of the channel is caused by

shadowing, the micro-scale variation of the channel is caused by multipath

fading.

Rain attenuation in higher carrier frequencies used in HTS systems such

as Ka/Q/V/W-bands is much larger than that in lower carrier frequencies

such as C/Ku-bands [13]. A rain attenuation estimation method is recom-

mended in ITU-R P618-12 [14]. The rain attenuation A0.01 is calculated

as

[A0.01] = γR × LE, (1.7)

where γR is a specific attenuation coefficient and LE is effective path length.

In order to adapt the fluctuating loss of radio links due to the surrounding
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environment and the climate, the Digital Video Broadcasting for Satellite

Second Generation (DVB-S2) and the extension of DVB-S2, DVB-S2X, stan-

dard are implemented. They use an adaptive coding and modulation (ACM).

The radio link information is included in the physical layer of DVB-S2X and

the appropriate ACM schemes are selected. It enhances the spectrum effi-

ciency in a higher carrier-to-noise ratio (CNR) condition and provides robust

communication in a lower CNR condition.

The resource allocation in the satellite system is restrained by the limited

amount of on-board power because the satellites in an orbit can only be

supplied by solar paddles. The optimum power allocation to beams can

improve the system throughput through ACM.

Digital beamformig (DBF) technologies widely used in mobile commu-

nication systems is also promising in the satellite communication system

[17–19]. The shape and the position of the beams can be controlled by a

network operation center (NOC) that plans satellite operation. Wasteful re-

sources can be reduced by the beams following to the positions of mobile

terminals (MTs) such as airplanes and ships. Additional beams can also be

formed to support traffic in the areas with concentrated traffic demands if

the bandwidth of the fixed beams is not large enough.

Beam hopping is a technique of efficiently allocating satellite power with

DBF [20, 21]. When a large number of active beams, such as 100 or 1000

beams for HTSs, are formed with DBF, a huge amount of power is required.

Therefore, on-board power is saved by switching the active beams in a TDMA

or a multi-frequnecy TDMA manner.

A digital channelizer realizes flexibility in a frequency domain [22–24]. It
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is possible to map desired signals to an arbitrary sub-channels in the satellite

transponder. It is expected to improve the spectrum efficiency for user links

by flexible frequency resource allocation according to a traffic demand for

each beam.
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Figure 1.11: Motivation of research.

1.3 Motivation of Research

Efficient resource allocation utilizes limited resources such as allocation power

or flexible bandwidth in the next-generation communication systems includ-

ing the TN and the NTN. It may be possible to achieve better quality and

larger capacity through the effective use of channels that suffer from fre-

quency selectivity or surrounding environment. In the dissertation, the re-

source allocation schemes for the TN and the NTN are proposed, respectively,

and they are based on interference avoidance in the assumed systems. It is

possible to apply each resource allocation scheme independently to each sys-

tem when the two systems utilize different frequency bandwidths. However,
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it is inevitable to take the interference between the TN and the NTN system

when they share the spectrum. The spectrum sharing between the different

systems are out of the target of the dissertation. In Section 4, we describe

the challenges and future prospects as to the multi-layered spectrum sharing.

The equalization of communication opportunities through scheduling leads

to better fairness among UEs. However, these objective functions are hard

to maximize simultaneously and there is a trade-off relationship in maxi-

mizing these respective objective functions such as the bit rate, the system

throughput, the fairness among UEs, and the computational complexity. In

order to efficiently handle increasing traffic, it is required to apply a resource

allocation scheme that demands less computational complexity as much as

possible.

In the TN, 28GHz, 3.7GHz, and 4.5GHz bands have been allocated in

Japan for the 5G NR in 3GPP. Such higher frequency bands makes the path

loss larger than the other bands assigned for the LTE. Distributed antenna

transmission (DAT) that is a promising system in the next-generation TN can

resolve the problem of larger path loss in high-frequency bands by distributed

antennas [25, 26]. Radio resource allocation in the DAT has a challenge in

terms of the computational complexity because the centralized information

at a central unit (CU) and the feedback overhead including channel state

information (CSI) is huge due to many distributed transmission points (TPs)

[27–29].

In the NTN, high throughput satellites (HTSs) have been paid atten-

tion because they have the potential to significantly reduce the cost per bit

by increasing the throughput of each communication satellite. In a satel-
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lite communication system using the HTS, a wide bandwidth above the Ka

band is usually utilized. Extremely dense frequency reuse is realized by sharp

multi-beams. The multiple gateway ground stations are simultaneously used

for expanding the capacity of the feeder link. In the next generation of the

HTS, in addition to the extension of existing functions, site diversity for se-

lecting appropriate feeder links is realized as an emerging technology [30,31].

Furthermore, flexible frequency allocation with digital channelizers will be

implemented for leveraging weather and traffic condition fluctuation predic-

tion with AI technology. In prior research frequency flexibility were enabled

by digital channelization on next-generation HTS systems and optimization

problems in the time domain were modeled in [32]. Furthermore, the au-

thors in [32, 33] focused on optimizing the amount of throughput and the

number of control instances. However, optimization focuses on a beam index

sequence by a channelizer. Then, no simultaneous optimization including

fairness among UEs are carried out.

The overall structure of this dissertation is presented in Fig. 1.11. In

Chapter 2, an improved RR scheduling scheme for the DAT, which main-

tains the system throughput and fairness among UEs, is introduced to re-

duce the computational complexity. The purpose, research issue, details, and

its achievement of the proposed RR scheduling presented in Chapter 2 are

summarized in Table 1.1. In Section 2.1, the initial phase selection of the

RR scheduling in DAT is proposed. The initial phases for the RR scheduling

sequence of the macro-cells controlled by the same CU are sequentially se-

lected to maximize the system throughput. The inter-cell interference from

adjacent cells can be estimated because the initial phases are selected in turn
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and the control information for initial phases are shared among the macro-

cells connected to the same CU. In Section 2.2, the proposed RR scheduling

is further improved. Some UE sets with the lower tentative throughput are

eliminated from the RR scheduling sequence. That is because those UE sets

suffer from large intra-cell interference due to close UE positions. Moreover,

the UE set selection can reduce the computational complexity in the initial

phase selection because the candidate of the initial phases are limited by

shortening the RR scheduling sequences.

In Chapter 3, a frequency resource allocation scheme for the HTS with

the digital channelizer is proposed. The purpose, research issue, details,

and its achievement of HTS resource allocation presented in Chapter 3 are

summarized in Table 1.2. In Section 3.1, the flexible frequency resource

allocation by the digital channelizer between adjacent beams is focused, and

the process of determining the allocation frequency bandwidth for beams in

the order of beam sequence is presented. Since the allocation bandwidth for

the preceding beam determines the bandwidth to be assigned to the current

beam and the allocated bandwidth depends on the configurable frequency

interval of the channelizer. The frequency resource allocation to the beams is

then modeled as a finite Markov decision process (MDP). In this dissertation,

the numbers of allocated beam indexes is treated as a beam-index-series

problem. In Section 3.2, the beam-index-series finite MDP is solved with a

Q-learning algorithm. The proposed frequency resource allocation scheme

adopts an evaluation function to balance the system throughput and the

fairness among UEs. A sub-optimum solution of the evaluation function

realizes the relationship of the throughput and the fairness and it is close to
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Table 1.1: Outline of the proposals for Chapter 2.
Chapter 2 Purpose Reduce the scheduling complexity for the DAT.

Research issue Radio-resource scheduling in DAT among multiple
transmission points (TPs) with lower computational
complexity is a challenge to solve.

Proposed scheme Determine the initial phase for the RR scheduling se-
quence on a macro-cell-by-macro-cell and select the UE
set combinations in the RR scheduling sequence.

Achievement The proposed RR scheduling has reduced the compu-
tational complexity for the resource allocation in the
OFDMA communication system while the deterioration
of the system throughput and the fairness among UEs
has been suppressed.

Table 1.2: Outline of the proposals for Chapter 3.
Chapter 3 Purpose Develop the frequency resource allocation scheme of the

beams for the next-generation HTS with the digital
channelizer.

Research issue The resource allocation scheme with digital channelizer
is required to balance the trade-off between the system
throughput and the fairness among the UEs.

Proposed scheme Allocate the frequency resources to the beams for the
next-generation HTS. It is modeled as the beam-index-
series Markov decision process and solves the resource
allocation problem with the Q-learning algorithm.

Achievement The proposed resource allocation scheme with the Q-
learning algorithm is able to coordinate the trade-off
between the system throughput and the fairness among
UEs.

the optimum. It can also significantly reduce the computational complexity

though enough amount of prior training is required to be carried out.

1.3.1 Overview of Chapter 2

The scheduling schemes such as the Max-C/I scheduling, the PF scheduling,

and the RR scheduling for the DAT have been compared in [34]. The PF

scheduling shows superior performance in terms of the system throughput

and the fairness index (FI). However, it is shown that the system through-
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Figure 1.12: Assumed system in Chapter 2.

put and the user fairness of the RR scheduling are close to those of the PF

scheduling and the RR scheduling demands lower computational complexity.

On the other hand, the user fairness of the Max-C/I scheduling has resulted in

significant performance deterioration. In [34–42], cooperative DAT (CDAT)

with multi-user spatial multiplexing has been proposed to maximize the sys-

tem throughput and to decrease the co-channel interference (CCI) especially

for the cell-edge users. However, none of those prior research applied the

improved RR scheduling to the DAT.

The assumed system of the DAT in Chapter 2 is shown in Fig. 1.12 [43,

44]. The multiple TPs in multiple macro-cells are connected to the CU. The

multi-user multi-input multi-output (MIMO) with the block diagonalization

(BD) algorithm is introduce to the DAT to alleviate the intra-cell interference
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because the multiple TPs are operated as the distributed MIMO [45].

In Section 2.1, initial phase selection for the RR scheduling has been pro-

posed in the DAT. In the initial phase selection, the initial phases of the

RR scheduling sequence of the targeted macro-cell are sequentially deter-

mined. The estimated throughput can be calculated by taking the inter-cell

interference into account. This is possible since the allocation information

in the adjacent macro-cells that are fixed at the previous scheduling time

slot is collected by the CU. Three different initial phase selection algorithms

based on the estimated throughput are introduced; the random selection, the

maximum selection, and the selection with Gibbs sampling. The maximum

selection effectively mitigates the inter-cell interference and shows the highest

throughput.

In Section 2.2, UE sets selection has been introduced to reduce the intra-

cell interference and the computational complexity. The intra-cell interfer-

ence can be caused by the closer arrangement of UEs allocated to the same

RB in the macro-cell. In the UE set selection, specific UE sets are eliminated

from the RR scheduling sequence by the Q-learning algorithm because the

sequences include UE combinations that cause large intra-cell interference.

The computational complexity of the initial phase selections becomes lower

because the number of the candidate initial phases decreases as the length

of the RR scheduling sequences becomes shorter. Numerical results obtained

through computer simulation show that under the some conditions the max-

imum selection is comparable to or outperforms the weighted PF scheduling

in terms of the computational complexity, fairness, and throughput.
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1.3.2 Overview of Chapter 3

The next-generation HTSs have hundreds of beams and the frequency band

can be shared by adjacent beams because a digital channelizer realizes flexible

resource allocation [47–52]. In prior research, frequency resource allocation

schemes for the HTSs with the digital channelizer have been studied [32,33,

53,54]. In [53,54], AI-based resource allocation schemes have been proposed.

The authors focus on the frequency resource allocation, gain control, and

power control. The authors in [32] have modeled the resource allocation as

a time-series problem to reduce the amounts of satellite control and traffic

loss. The frequency allocation to the current beam depends not only on

previous allocation to the current beam but also on the frequency allocation

to the preceding beam because the frequency bandwidth is shared by the

adjacent beams. Moreover, the communication opportunity among UEs have

not been included in the above researches. Therefore, it is necessary to
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model the beam-index-series frequency allocation for the HTS with digital

channelizer and to simultaneously optimize the system throughput and the

fairness among UEs. The assumed system in Chapter 3 is shown in Fig.

1.13. A bent-pipe geostationary earth orbit (GEO) satellite establishes the

forward link from gateways (GWs) to UEs.

In Section 3.1, frequency resource allocation is modeled as a beam-index-

series finite Marcov decision process. The state S is defined as a frequency

resource allocation to the preceding beam and the action A is obtained by

dividing the frequency bandwidth by the allocated frequency bandwidth to a

beam. The number of actions is discretized per the configurable frequency in-

terval of the digital channelizer. In Section 3.2, a resource allocation problem

is solved by the Q-learning algorithm and the the system throughput is set

as reward R for the action A. The system throughput is calculated through

dynamic programming (DP). The policies of the resource allocation deter-

mined by a NOC are determined to maximize the number of allocated UEs,

the system throughput, and a combined evaluation function composed of the

system throughput and the number of the allocated UEs. The superiority of

the proposed resource allocation scheme and the combined evaluation func-

tion are proved by numerical results obtained through computer simulation.

The NOC is able to coordinate the trade-off between the system throughput

and the fairness among UEs.
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Chapter 2

Resource Allocation for
Terrestrial Network

2.1 Initial Phase Selection of RR Scheduling
in Distributed Antenna Transmission

2.1.1 Introduction

Recently, smartphones and tablet computers are widely used all over the

world. Therefore, the amount of mobile traffic has increased explosively

[55]. In addition, the IoT applications have been paid a large attention

[56]. The specifications in 5G are determined in order to provide reliable

wireless connections to those devices [55]. The spectrum efficiency of the

5G system must be improved by at least three times as compared to that

of the previous generation [57]. DAT have been investigated for achieving

such high spectrum efficiency since it improves as the number of antennas

increases [29, 46].

Moreover, channel conditions between UEs and base stations vary accord-

ing to propagation environment. Therefore, spectrum efficiency also depends

on the allocation of UEs and the selection of serving antennas [12]. In [58]
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and [34,39,40] scheduling schemes for a DAT based cellular system have been

investigated. The research in [58] has demonstrated a UE allocation scheme

with a dedicated hardware. In this research, each antenna selects a UE that

achieves the highest throughput. The iteration of UE selection enables the

system throughput to be close to the optimum. In [34], Max-C/I schedul-

ing, PF scheduling, and RR scheduling are compared. The RR scheduling is

less complex, while it can achieve the equivalent throughput and fairness as

compared to the PF scheduling. However, in this research no UE allocation

sequence in RR scheduling is taken into account.

This section proposes a UE allocation scheme for the RR scheduling in

the DAT. The proposed scheduling scheme aims to be implemented espe-

cially in a limited area such as the ones in factories [59, 60]. Thus, for low

complexity, the proposed scheme sequentially determines UE allocation over

multiple cells with DAs and it only selects the phase of the predetermined UE

allocation sequence in each macro cell. Four different phase selection criteria

are compared in this section. This section evaluates the performance details

of the proposed scheme and compares the tendencies of system throughputs

in one user and two users allocation cases.
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2.1.2 System Description
2.1.2.1 Cell Model

Figure 2.1: Cell model with DAT.

A hexagonal seven-cell model shown in Fig. 2.1 is assumed. One macro cell

consists of seven micro cells and each DA is placed at the center of each

micro cell. The number of DAs in each macro cell is NA = 7. All DAs are

connected to a CU. Interference only from adjacent macro cells is assumed

to be known to the CU. Also, RR scheduling is adopted in an OFDM system

for the allocation of UEs over RBs. Within the macro cell multiple UEs can

be assigned to each RB and served by multiple DAs.
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2.1.2.2 RR Scheduling

Suppose that the number of users in a macro cell is NU , the number of users

allocated to each RB is NS, the total number of UE combinations is
(︁
NU

NS

)︁
, and

the number of the DAs is NA. The RR scheduling allocates UEs according

to a UE allocation sequence with the length of
(︁
NU

NS

)︁
.

2.1.2.3 Antenna Selection

DA 

DA 

DA 

UE 

UE 

UE 

Figure 2.2: Signal and interference.

Each UE is connected by one of the DAs that can realize the highest through-

put at each RB as shown in Fig. 2.2. This is represented by a coefficient,

P r
nm. P r

nm for the m-th DA to the n-th UE in the r-th RB is given as

P r
nm =

{︄
1 (m = mr

n)

0 (m ̸= mr
n)

(2.1)

where mr
n is the selected DA corresponding to the n-th UE in the r-th RB.

Thus, the signal for the n-th UE in the r-th RB is transmitted only from the
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mr
n-th antenna. The transmit signal to the n-th UE in the l-th subcarrier of

the r-th RB is represented by xrl
n (k

rl
n ), where krl

n (0 ≤ krl
n ≤ Kr

n − 1) is the

constellation point index of the symbol and Kr
n is the modulation order for

the n-th UE in the r-th RB.

Assuming that the RR scheduling with the phase of δ is applied, the

received signal for the ν-th UE is given by

yrlν = hrl
νmν

√︂
P r
νmν

xrl
ν (k

rl
n ) +

NA∑︂
m=1

∑︂
n∈{µr

δ},n ̸=ν

hrl
nm

√︁
P r
nmx

rl
n (k

rl
n ) + zrlν (2.2)

where hrl
νmν

is the channel response between the m-th DA and the n-th UE,

zrlν is the additive white Gaussian noise (AWGN) with a mean of zero and a

variance of σ2 on the l-th subcarrier of the r-th RB, and {µr
δ} is the set of NS

UE indexes allocated to the r-th RB based on the RR scheduling sequence

with the initial phase of δ. The details of the RR scheduling is explained in

Section 2.2.

The throughput for the ν-th UE in the l-th subcarrier of the r-th RB is

calculated with as

T̂
rl
ν (δ,m

r
ν) = log2

(︄
1 +

P r
nm∑︁NA

m=1

∑︁
n∈{µr

δ},n ̸=ν P
r
nm + σ2

)︄
(2.3)

This is the tentative throughput for antenna allocation without taking inter-

cell interference into account as it is determined after the allocation of DAs

to UEs in the adjacent cells. The sum of the throughputs over the subcarriers

and the allocated UEs in the r-th RB, T̂
r

sum(δ,m
r
1, · · · ,mr

NS
), is then given
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by

T̂
r

sum(δ,m
r
1, · · · ,mr

NS
) =

∑︂
l∈{lr}

∑︂
n∈{µr

δ}

T̂
rl
n (δ,m

r
n) (2.4)

where {lr} is the set of subcarrier indexes in the r-th RB. The DAs are se-

lected for NS UEs to maximize the total throughput, T̂
r

sum(δ,m
r
1, · · · ,mr

NS
).

This is described as

{mr
1, · · · ,mr

NS
} = arg max

m̂r
1,··· ,m̂r

NS

T r
sum(δ, m̂

r
1, · · · , m̂r

NS
) (2.5)

where mr
n
ˆ is the antenna index allocated to the n-th UE in the r-th RB.

2.1.2.4 Throughput Calculation

Different from the tentative throughput, interference from other macro cells

is included in the evaluation of the system throughput. The throughput for

the ν-th UE in the l-th subcarrier of the r-th RB corresponding to the phase

of δ, T rl
ν (δ,mr

ν), is given by

T rl
ν (δ,mr

ν) = log2

(︄
1 +

P r
nm∑︁NA

m=1

∑︁
n∈{µr

δ},n ̸=ν P
r
nm + ηrlν

2

)︄
(2.6)

where ηrlν is the sum of the noise and the interference from the outer macro

cells to the ν-th UE in the l-th subcarrier of the r-th RB. The total sum of

the throughputs over the subcarriers and the allocated UEs in the r-th RB

at the c-th macro cell, Tc(δc), is given by

Tc(δc) =
∑︂
r

∑︂
l∈{lr}

∑︂
n∈{µr

δc
}

T rl
n (δc,m

r
n). (2.7)

Therefore, the system throughput over seven macro cells normalized by the

number of the macro cells and the subcarriers is given as

T =
1

7
· 1

NSC

7∑︂
c=1

Tc(δc) (2.8)
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where NSC is the number of the subcarriers.

2.1.3 Proposed RR Scheduling

1

2

3

4
5

6

7

Figure 2.3: Order of sequential RR scheduling.

The proposed RR scheduling selects the phase of the UE allocation sequence.

The phase selection is carried out in each macro cell sequentially over multiple

macro cells. The order of the sequential phase selection is shown in Fig. 2.3.

In order to improve the system throughput with the proposed RR schedul-

ing, the initial phase is determined in one of the seven macro cells at each

timeslot. The initial phases of seven macro cells are then renewed over seven
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timeslots and the interval of seven timeslots is here called as a period. For all

the RBs during each timeslot, UEs are allocated based on the sequence with

the initial phase. An example of the UE allocation sequence is presented in

Table 2.1. The row indicates the initial phase index of the UE allocation

sequence and the column indicates the allocation index of the UE allocated

to the RBs. The length of the column is NS because the number of the UEs

allocated to one RB is represented as NS. Therefore, the cell in the x-th

row and the y-th column represents the x-th UE index allocated to the first

RB at the initial phase y. The initial phases are selected according to the

estimated system throughput and the set of UEs with the indexes contained

in the row of the selected initial phase are assigned to the first RB. The set

of UEs with the indexes contained in the next row are assigned to the second

RB and the allocation is repeated. The allocation of the set of UEs returns

to the top if it reaches the bottom of the table.

Table 2.1: UE allocation sequence.
UE allocated to RB

Phase UE 1 UE 2 · · · UE NS

0 1 2 · · · NS

1 1 2 · · · NS + 1
... ... ... . . . ...(︁

NU

NS

)︁
− 1 NU −NS + 1 NU −NS + 2 · · · NU

2.1.4 Throughput Estimation

Suppose that the expected throughput for the ν-th UE in the l-th subcar-

rier of the r-th RB corresponding to the initial phase, δ, is represented as

T̄
rl
ν (δ,m

r
ν). The total sum of the expected throughput over all the UEs and
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the subcarriers of the RBs for the c-th macro cell is calculated from Eq. (2.6)

and is given by

T̄ c(δc) =
∑︂
r

∑︂
l∈{lr}

∑︂
n∈{µδc}

T̄
rl
n (δc,m

r
n). (2.9)

The expected system throughput corresponding to the set of the initial

phases, {δc}, over the macro cells is then given by

T̄ (δ1, · · · , δ7) =
7∑︂

c=1

T̄ c(δc). (2.10)

In this section, four different criteria to the expected throughputs are

applied in the initial phase selection.

2.1.4.1 Full Search

Full search calculates all the combinations of the initial phases over the seven

macro cells. Since the length of the UE allocation sequence is
(︁
NU

NS

)︁
, the

number of combinations in seven macro cells is (
(︁
NU

NS

)︁
)7.

2.1.4.2 Random Selection

Random selection selects the initial phases in all the macro cells randomly

and sequentially. Therefore, no throughput is estimated over all the periods.

2.1.4.3 Maximum Selection

For low complexity, the proposed scheme selects the phases of the UE al-

location sequence over multiple macro cells sequentially and it is repeated

iteratively. Suppose that t is the time index and δ̂
(t)

c is the phase selected

in the c-th macro cell at the t-th time index, the sum of the tentative

throughputs given by the selection of the initial phase at the c-th macro
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cell, T̄ (δ̂
(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 ), is calculated from Eq. (2.10) for

all of δc(0 ≤ δc ≤
(︁
NU

NS

)︁
− 1). The maximum selection selects the phase with

the largest expected throughput. The maximum selection is defined as

δ̂
(t)

c = arg max
δ̂c

T̄ (δ̂
(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 ). (2.11)

Since this criterion selects the phase sequentially, the system throughput may

fall into a local optimum. The throughput estimation is conducted 7(
(︁
NU

NS

)︁
)

times at each period.

2.1.4.4 Selection with Gibbs Sampling

The selection with Gibbs sampling uses the expected throughput,

T̄ (δ̂
(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 ), corresponding to the set of the phases,

{δc}. The probability of selecting the phase, δ̂c, in the c-th macro cell is given

by

P (δ̂c) =
exp (T̄ (δ̂

(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 )/K)∑︁(NU
NS
)−1

δ̂c=0
exp (T̄ (δ̂

(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 )/K)

(2.12)

where K is the temperature coefficient. The denominator is the sum of the

exponentials of the estimated throughputs for each selected initial phase, and

the numerator is the exponential of the estimated throughput for a particular

initial phase δ̂c selected. Therefore, the probability of selecting the initial

phase is higher as the estimated throughput of the initial phase is larger.

Unlike the maximum selection, the selection with Gibbs sampling results in

the avoidance of a local optimum because other than the initial phase with

the highest estimated throughput is stochastically selected. If K is large, this
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Table 2.2: Simulation conditions.
Cell layout Hexagonal 7-cell model
Inter-antenna distance 50, 100, 150, 200 m
Minimum distance
between UE and DA 5 m

Height of antennas 10 m
Height of UEs 1.5 m
System bandwidth 4.32 MHz
RB bandwidth 180 kHz
Number of RBs 24
Number of subcarriers per RB 12
Transmit power 30 dBm

Distance dependent path loss 140.7 + 36.7 log10(R)dB
R:Distance (km)

Shadowing standard deviation 8 dB

Channel model

Intersite cell:
One-path Rician
From outer cell:
Six-path Rayleigh

Receiver noise density -174 dB/Hz

Allocation Single-user allocation
2-user allocation

Number of UEs per macro cell 3, 5, 10, 15, 20
Temperature coefficient K 100, 1000, 10000

criterion tends to perform as random selection. If K is small, this criterion

works similarly as maximum selection. The throughput estimation is carried

out 7
(︁
NU

NS

)︁
times at each period.

The advantage of applying Gibbs sampling is that there is a certain prob-

ability that the search result may escape from a local optimum even if the

search falls into it and the set of the phases approaches the global optimum.
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2.1.5 Numerical Results
2.1.5.1 Simulation conditions

The hexagonal 7-cell model is assumed as a cell layout. The inter-antenna

distance is selected from 50, 100, 150, or 200 meters as 256QAM signals with

less than 50 MHz bandwidth can be transported over a LAN cable by up to

200 meters [63]. The height of the DAs is 10 meters and the height of the UEs

is 1.5 meters. The system bandwidth is 4.32 MHz and the RB bandwidth is

180 kHz. The number of RBs is 24 and the number of subacarriers per RB is

12. The transmit power per a antenna is set to 30dBm. The decay coefficient

of the propagation loss is 36.7. The shadowing deviation is 8dB. An one-path

Rician fading channel model is assumed for intra cell and a six-path Rayleigh

fading channel with an exponential decay profile is assumed for interference

from outer cells. The root-mean-square (RMS) delay spread is seto to 1 µs.

The receiver noise density is set to -174 dB/Hz. A single-user allocation

(NS = 1) and a 2-user allocation (NS = 2) are evaluated. The number of

UEs per macro cell is 3, 5, 10, 15, or 20. The temperature coefficient, K,

is set as 100, 1000, or 10000. The average system throughput per subcarrier

per cell is evaluated for different phase selection criteria unless it is specified.

To measure the effect of temperature coefficient, the selection probability

of the phase versus the estimated relative throughput is evaluated. The

estimated relative throughput with the initial phase, δ̂c, in the c-th macro

cell is given by

R(δ̂c) =
T̄ (δ̂

(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 )/K∑︁(NU
NS
)−1

δ̂c=0
T̄ (δ̂

(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 )/K

. (2.13)
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2.1.5.2 Single-User RR Scheduling

In single-user RR scheduling, the system throughput characteristics versus

the number of search iterations are presented in Figs. 2.4 and 2.5. The

number of UEs are 3 or 10 and the inter-antenna distance is 100 meters. The

system throughput for the full search is included in Fig. 2.4. The maximum

selection achieves the largest throughput except the full search. The system

throughput for the maximum selection reaches 99% of that for the optimum

system throughput even the number of search iterations is small. This implies

that not many local optimums exist in the search space. Therefore, the

system throughput for the Gibbs sampling with the smaller temperature

parameters is larger. The system throughput of the random selection is

equivalent with those of the Gibbs sampling with K = 100 and K = 1000.

The average phase selection probability in the Gibbs sampling versus the

estimated relative throughput is presented in Fig. 2.6. The number of UEs

is 10, the inter-antenna distance is 100 meters, and the number of search

iterations is 22. In single-user RR scheduling, the number of combinations

for the initial phases is equivalent to the number of UEs and each criterion

for the phase selection picks up the initial phases from the candidates of the

initial phases. The Gibbs sampling with K = 1000 or K = 10000 selects the

initial phase almost randomly while the Gibbs sampling with K = 100 tends

to select the initial phases with higher throughputs.
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Figure 2.4: System throughput vs. no. of search iterations (single-user RR
scheduling, NU = 3, inter-antenna distance 100 m).
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Figure 2.5: System throughput vs. no. of search iterations (single-user RR
scheduling, NU = 10, inter-antenna distance 100 m).
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Figure 2.6: Average phase selection probability vs. relative throughput
(single-user RR scheduling, NU = 10, 22 search iterations, inter-antenna
distance 100 m).
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The cumulative distribution function (CDF) of the throughput is shown

in Fig. 2.7. The figure indicates that the maximum selection is also superior

to the other criteria in terms of 5%-CDF throughput. Maximum selection

achieves higher throughput than the others criteria including the selection

with Gibbs sampling. Gibbs sampling is able to escape from a local opti-

mum and the selection with Gibbs sampling tends to indicate superior per-

formance. However, in the assumed system, the local optimum rarely exists

and the throughput difference between the optimum and the local optimum

is small. The ratio of the local optimums is 0.62 % among all the combi-

nations. The CDF of the throughput difference between the optimum when

NU = 3 and the local optimum is shown in Fig. 2.8. The search result hardly

falls into the local optimum and the throughput difference is small even if

the search falls into it. Consequently, maximum selection outperforms the

other criteria.
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Figure 2.7: CDF of throughput(single-user RR scheduling, NU = 10, 14
search iterations, inter-antenna distance 100 m).
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Figure 2.8: CDF of difference between optimum and local optimum (single-
user RR scheduling, NU = 3, inter-antenna distance 100 m).
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In single-user RR scheduling, the system throughput characteristics ver-

sus the number of users are shown in Fig. 2.9. The number of search iter-

ations is 14 and the inter-antenna distance is 100 meters. If the number of

UEs increases from 3 to 15, the system throughput increases. If the number

of UEs increases from 15 to 20, the system throughput deteriorates. The

reason is that the allocated UEs over all the RBs includes more versatile

combinations if the number of UEs increases. Therefore, it is harder to as-

sign better combinations of the UEs over the macro cells just by selecting

the initial phase of the sequences.
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Figure 2.9: System throughput vs. no. of users (single-user RR scheduling,
14 search iterations, inter-antenna distance 100 m).
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The system throughput versus the inter-antenna distance is shown in Fig.

2.10. The number of UEs is 10 and the number of search iterations is 14. If

the inter-antenna distance is larger, the system throughput is improved. This

is because the interference from the outer macro cells decreases owing to the

propagation loss. When the inter-antenna distance changes from 150 meters

to 200 meters, almost the same system throughput is maintained. Thus,

the inter-cell interference is not significant if the inter-antenna distance is

larger. However, the distance between the DA and the UE also increases

and the received signal power reduces. Thus, less improvement in the system

throughput is observed.
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Figure 2.10: System throughput vs. inter-antenna distance (single-user RR
scheduling, NU = 10, 14 search iterations).
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2.1.5.3 2-User RR Scheduling

In 2-user RR scheduling, the system throughput versus the number of search

iterations is shown in Figs. 2.11 and 2.12. The number of UEs is 3 or

10 and the inter-antenna distance is 100 meters. The same as the system

throughput in single-user RR scheduling the maximum selection indicates

the largest throughput and it reaches 99.5% of that for the full search as

shown in Fig. 2.11. In terms of the system throughput with the Gibbs

sampling the same tendencies can be observed with those in single-user RR

scheduling. The system throughput for the Gibbs sampling with the smaller

temperature parameter is larger.
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Figure 2.11: System throughput vs. no. of search iterations (2-user RR
scheduling, NU = 3, inter-antenna distance 100 m).
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Figure 2.12: System throughput vs. no. of search iterations (2-user RR
scheduling, NU = 10, inter-antenna distance 100 m).
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The average phase selection probability in the Gibbs sampling versus the

estimated relative throughput is presented in Fig. 2.13. The number of UEs

is 10, the inter-antenna distance is 100 meters, and the number of search

iterations is 22. In 2-user RR scheduling, the number of combinations for

the initial phases is
(︁
10
2

)︁
and each criterion for the phase selection picks up the

initial phases from the candidates of the initial phases. The Gibbs sampling

with K = 1000 or K = 10000 selects the initial phase almost randomly while

the Gibbs sampling with K = 100 tends to select the initial phases with

higher throughputs. The convergence performance of the criterion for the

initial phase selection is shown in Fig. 2.14. The selection of the initial phase

in each macro cell exhibits a marked enhancement in terms of the throughput

during the initial period except for the random selection and the selection

with Gibbs sampling in large temperature coefficient K. The selections with

the high randomness are treated as the conventional RR scheduling scheme

because of the lack of the performance improvement. Moreover, an ε-greedy

scheme is implemented in Fig. 2.14 and the parameter that represents the

probability of selecting other than the initial phase with the largest estimated

throughput, ε, is set to 0.5, 0.1, and 0.01. As the probability of selecting the

initial phase with the largest estimated throughput increases, the throughput

with the ε-greedy scheme approaches that of the maximum selection. The

result emphasizes that there are almost no local solutions and the optimal

solution can be reached by the maximum selection.
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Figure 2.13: Average phase selection probability vs. relative throughput
(single-user RR scheduling, NU = 10, 22 search iterations, inter-antenna
distance 100 m).

Figure 2.14: Comparison with ε-greedy scheme.

51



The CDF of the throughput is shown in Fig. 2.15. The figure indicates

that the maximum selection is also superior to the other criteria in terms of

5%-CDF throughput. Maximum selection achieves higher throughput than

the others criteria including the selection with Gibbs sampling. Gibbs sam-

pling is able to escape from a local optimum and the selection with Gibbs

sampling tends to indicate superior performance. However, in the assumed

system, the local optimum rarely exists and the throughput difference be-

tween the optimum and the local optimum is small. The ratio of the local

optimums is 0.50 % among all the combinations. The CDF of the through-

put difference between the optimum and the local optimum when NU = 3

is shown in Fig. 2.16. The search result hardly falls into the local opti-

mum and the throughput difference is small even if the search falls into it.

Consequently, maximum selection outperforms the other criteria.
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Figure 2.15: CDF of throughput(2-user RR scheduling, NU = 10, 14 search
iterations, inter-antenna distance 100 m).
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Figure 2.16: CDF of difference between optimum and local optimum (2-user
RR scheduling, NU = 3, inter-antenna distance 100 m).

53



In 2-user RR scheduling, the system throughput versus the number of

UEs are presented in Fig. 2.17. The number of the search iterations is 14

and the inter-antenna distance is 100 meters. Different from those in single-

user RR scheduling, the system throughput increases as the number of UEs

grows. This is because of the UE allocation sequence given in Table. 2.1. In

2-user RR scheduling, the same UE index is allocated as UE 1 consecutively.

Therefore, by selecting the initial phase of the sequence, the same UE can

be allocated to the consecutive RBs and it is more possible to find better

combinations of UEs over the macro cells and all the RBs.
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Figure 2.17: System throughput vs. no. of users (2-user RR scheduling, 14
search iterations, inter-antenna distance 100 m).
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The system throughput versus the inter-antenna distance is shown in Fig.

2.18. The number of UEs is 10 and the number or the search iterations is 14.

If the inter-antenna distance is longer, the system throughput improves. The

reason is that the interference from other macro cells decreases owing to the

propagation loss as the inter-antenna distance is long. Different from those

in single-user RR scheduling, when the inter-antenna distance changes from

150 meters to 200 meters, the system throughput still increases. In 2-user

RR scheduling, the intra-cell interference among the DAs as well as inter-cell

interference reduces if the inter-antenna distance increases and the system

throughput improves.
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Figure 2.18: System throughput vs. inter-antenna distance (2-user RR
scheduling, NU = 10, 14 search iterations).
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2.1.6 Conclusions

In this section, the UE allocation scheme for the RR scheduling is proposed.

The proposed scheme selects the initial phases of the UE allocation sequence

over the macro cells sequentially. Four different phase selection criteria are

compared in this section. It has been shown through the numerical results

that the maximum selection achieves the largest throughputs and it reaches

over 99% of that for the optimum selection when the number of UEs is

three. In single-user RR scheduling, the proposed scheme achieves the largest

throughput when the number of UEs is about 15 while the different tenden-

cies are observed in 2-user RR scheduling. The system throughput improves

as the inter-antenna distance increases especially in 2-user RR scheduling.
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2.2 UE Set Selection for Allocation Sequence
of RR Scheduling

2.2.1 Introduction

Recently, many IoT applications have been launched and the amount of mo-

bile traffic has increased explosively [57]. DAT has been studied as one form

of the 5G mobile communication deployment and can resolve the problem of

larger path loss in high frequency bands. Radio-resource scheduling in DAT

among multiple TPs with lower computational complexity is the challenge

to solve under a trade-off between system throughput and fairness among

users [12].

To accomplish higher system throughput and to mitigate CCI especially

for cell-edge users, CDAT using multi-user spatial multiplexing has been

proposed [34–37,39,41,42]. The combination of CDAT, UE classificaiton, UE

clustering, and cluster-antenna association is investigated as evolved CDAT

in [36, 37]. Fractional frequency reuse (FFR) is adopted in [36] to mitigate

inter-cell interference of cell edge UEs. In [34], Max C/I scheduling, PF

scheduling, and RR scheduling in CDAT are compared. In spite of the low

complexity of RR scheduling, the system throughput and the fairness were

close to those of PF scheduling. On the other hand, coordinated radio-

resource scheduling with a global scheduler has been introduced in [41, 42].

The global scheduler computes a PF metric for each combination of UEs

while local schedulers determine the association between TPs and UEs.

However, those researches for UE allocation apply no scheduling criterion

for RR scheduling in DAT. In order to mitigate inter-cell interference, the
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initial phase selection of UE allocation sequences for RR scheduling in DAT

has been proposed in section 2.1 [61,62]. The problem of the scheme in section

2.1 is that no fairness among UEs was taken into account even through the

system throughput was improved. It is necessary that the system throughput

is enlarged while user fairness is maintained.

The researches on the resource allocation with reinforcement learning

have been flourishing because it can be applied to a system that is difficult

to be modelled. For example, in [64], in order to utilize the limited backhaul

capacity of millimeter-wave communication, the blockage patterns of chan-

nel states can be captured and predicted with deep reinforcement learning

(DRL). In [65,66], the authors have applied the DRL to high mobilities, such

as trains or unmanned aerial vehicles (UAVs), which cause unpredicted and

fluctuating links. They support the time division duplex (TDD) configura-

tion in real-time and adaptively change the ratio of TDD uplink/downlink.

As the integrated access and the backhaul architecture could be huge and

time-varying, the DRL have been introduced in [67] to the problem in which

the optimal solution that maximizes the sum rate of all UEs is intractable

to find. In [68,69], the aggregate network capacity employing the beamform-

ing and non-orthogonal multiple access (NOMA) have been maximized by

utilizing three reinforcement learning (RL) methods. The authors in [70,71]

approximate a traditional iterative power allocation algorithms that require

high computational complexity with the DRL algorithm with low compu-

tational complexity. The RL on the resource allocation is promising and

have the feasibility of spectrum efficiency improvement. However, to the

best of our knowledge, the RL has not been adapted to the RR scheduling
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Figure 2.19: Cell model.

in DAT. In this section, RR scheduling with RL is proposed to realize the

efficient UE allocation sequence of the RR scheduling for DAT with a BD

algorithm [72]. The proposed RR scheduling is compared to the weighted

PF scheduling in terms of the computational complexity, fairness, and the

system throughput [73].

2.2.2 System Description
2.2.2.1 Cell Model

A cell model shown in Fig. 2.19 is assumed. One macro cell consists of

hexagonal seven micro cells. A distributed antenna called a TP is located
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Figure 2.20: Overview of cell model.

at the center of each micro cell. The number of TPs in each macro cell is

NA = 7. All TPs are controlled by the same CU. CCI is caused by reusing

the same frequency channel in the other macro cells. The colored macro

cells in Fig. 2.19 exchange UE allocation information as shown in Fig. 2.20

and the system throughput is evaluated over the colored seven macro cells in

this section. Moreover, radio-resource scheduling for the allocation of UEs

over RBs is adopted for OFDM signal transmission. Multiple UEs can be

assigned to each RB and served by TPs within a macro cell. Suppose that

the number of UEs in a macro cell is NU and the maximum number of UEs

allocated to each RB is NS.

2.2.2.2 Antenna Selection

Multi-user MIMO with the BD algorithm is introduced to the DAT and the

system throughput calculation at the antenna selection [72]. As shown in Fig.

2.21 NS TPs are selected from NA TPs and signals for NS single antenna
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Figure 2.21: Multi-user MIMO systems in DAT (NS = 2).

UEs are spatially multiplexed. The TPs to support UEs should be selected

at the initial stage of radio-resource scheduling. Each UE is connected to one

of TPs that can achieve the highest estimated throughput. The estimated

throughput takes no inter-cell interference into account because which TPs

in adjacent macro cells cause CCI to UEs may change all the time. The TP

is selected exclusively so that NS TPs are connected to NS UEs. Suppose

that mrc is the TP set index of the TPs associated in the r-th RB at the c-th

macro cell as shown in Fig. 2.21. The number of TP set indexes is
(︁
NA

NS

)︁
. The

signals for the n-th UE in the r-th RB is transmitted only from the TPs of

the mrc-th TP set and the transmit signals from the other TPs are regarded

as intra-cell interference. The transmit signals are pre-coded with the BD
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algorithm so that only a desired signal reach each UE. The transmit signal

to the n-th UE on the l-th subcarrier in the r-th RB is represented by xrl
n .

The received signal for the n-th UE at the c-th macro cell is given by

yrlcn = Hrlc
nmrcWrlc

nmrcxrlc
n

+
∑︂

ν∈{µrc}

Hrlc
nmrcWrlc

νmrcxrlc
ν + zrlcn (2.14)

where Hrlc
nmrc is the channel response vector with a size of 1×NS between the

TPs of the mrc-th TP set and the n-th UE, Wrlc
nmrc is the pre-coding vector

with a size of NS × 1 between the TPs in the mrc-th TP set index and the

n-th UE, ν is the index of a UE that causes interference to the n-th UE, zrlcn

is the AWGN with a mean of zero and a variance of σ2 on the l-th subcarrier

in the r-th RB, and {µrc} is the set of NS UE indexes allocated to the r-th

RB at the c-th macro cell. The number of UE index sets, {µr}, is
(︁
NU

NS

)︁
.

The throughput for the n-th UE on the l-th subcarrier in the r-th RB at

the c-th macro cell is calculated as

T̂
rlc

n (mrlc) = log2

(︄
1 +

P rlc
nmrc∑︁

ν∈{µrc}P
rlc
νmrc+σ2

)︄
(2.15)

where the received signal power is represented as P rlc
nmrlc = |Hrlc

nmrcWrlc
nmrc |2

for the ν-th UE from the TPs of the mrc-th TP set on the l-th subcarrier

in the r-th RB at the c-th macro cell. This is the tentative throughput for

TP association without taking inter-cell interference into account as it is

determined after the association of TPs to UEs in the adjacent cells. The

sum of the throughputs over subcarriers and the allocated UEs in the r-th

RB, T̂
rc

sum, is then given by

T̂
rc

sum(m
rlc) =

∑︂
l∈{lr}

∑︂
n∈{µrc}

T̂
rlc

n (mrlc) (2.16)
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where {lr} is the set of subcarrier indexes in the r-th RB. The TP set indexes

are selected for
(︁
NU

NS

)︁
UE sets to maximize the total throughput, T̂

rc

sum(m
rlc).

2.2.3 Throughput Calculation

Different from the tentative throughput, interference from the other macro

cells is included in the system throughput calculation. The throughput for

the n-th UE on the l-th subcarrier in the r-th RB at the c-th macro cell,

T rlc
n , is given by

T rlc
n (mrlc)=log2

(︄
1 +

P rlc
nmrc∑︁

ν∈{µrc}P
rlc
νmrc+ηrlcn

2

)︄
(2.17)

where ηrlcn is the sum of the noise and the interference from the outer macro

cells to the n-th UE on the l-th subcarrier in the r-th RB. The total sum of

the throughputs to the n-th UE over the subcarriers in the r-th RB at the

c-th macro cell, T rc, is given by

T rc(n) =
∑︂
l∈{lr}

T rlc
n (mrlc). (2.18)

Therefore, the system throughput over seven macro cells, RBs, and allocated

UEs normalized by the numbers of the macro cells is given as

T =
1

7

7∑︂
c=1

∑︂
r

∑︂
n∈{µrc}

T rc(n) (2.19)

where {µrc} is the sets of UE indexes.

2.2.4 Fairness Index

The FI is calculated as [74]

FI =

∑︁7
c=1

∑︁NU

n=1
1

Tave

∑︁Tave

t=1 T c(n, t)

7
∑︁7

c=1NU

∑︁NU

n=1

(︂
1

Tave

∑︁Tave

t=1 T c(n, t)
)︂2 (2.20)
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where T c(n, t) is the throughput for the n-th UE in the t-th timeslot at the

c-th macro cell calculated from Eq. (2.18) over all the RBs and Tave is the

period for averaging the radio-resource scheduling.

2.2.5 Radio-Resource Scheduling

In this section, one subframe consists of multiple timeslots and one timeslot

consists of 14 OFDM symbols. Because of TDD, a half of the symbols are

allocated to downlink communication.

2.2.5.1 PF Scheduling

Weighted PF scheduling is applied in this section as a reference [73, 75]. In

the r-th RB at the c-th macro cell for the set of NS UE indexes, it maximizes

the following metric, f rc;

f rc(µrc) =
∏︂

n∈{µr}

(︄
1 +

(T̃
rc
(n, t))w1−w2

(Cn(t))w2

)︄
(2.21)

where T̃
rc
(n, t) is the estimated throughput derived from Eq. (2.18) for the

n-th UE set over the subcarriers in the r-th RB in the t-th timeslot at the c-

th macro cell, and w1 and w2 are the weights for the weighted PF scheduling.

A larger weight, w1, as well as a smaller weight, w2, tend to allocate a RB to

UEs with larger estimated throughputs. The interference from outer macro

cells are calculated on the basis of TPs that are associated to UEs in the

preceding subframe and Cn(t) is the average user throughput for the n-th

UE at the t-th timeslot. The PF metric is calculated at every subframe. The

throughput estimation is conducted NRB ·
(︁
NU

NS

)︁
times at each RB allocation.
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2.2.5.2 RR Scheduling

The total number of UE combinations is
(︁
NU

NS

)︁
. The conventional RR schedul-

ing allocates UEs according to a UE allocation sequences with the length of(︁
NU

NS

)︁
.

2.2.6 Proposed RR Scheduling
2.2.6.1 Throughput Estimation

Suppose that the expected throughput for the n-th UE set on the l-th sub-

carrier in the r-th RB corresponding to the initial phase δc for the c-th macro

cell is represented as T̄ rlc
n (δc,m

rc). The total sum of the expected throughput

over all the UEs and the subcarriers of the RBs for the c-th macro cell is

calculated from Eq. (2.17) and is given by

T̄
c
(δc) =

∑︂
r

∑︂
l∈{lr}

∑︂
n∈{µδc}

T̄
rlc
n (δc(m

rc)) (2.22)

where δc is the initial phase for the c-th macro cell. The expected system

throughput corresponding to the set of the initial phases, {δc}, over the macro

cells is then given by

T̄ (δ1, · · · , δ7) =
7∑︂

c=1

T̄
c
(δc). (2.23)

2.2.6.2 Algorithms for Initial Phase Selection

In this section, two different initial phase selection algorithms based on the

expected throughputs are applied in the initial phase selection proposed in

section 2.1 [61, 62].
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Random Selection Random selection selects the initial phases in all the

macro cells randomly and sequentially. Therefore, no throughput is estimated

over all the RB allocation.

Maximum Selection Maximum selection selects the initial phases of the

UE allocation sequences sequentially over multiple macro cells and it is re-

peated iteratively. Suppose that t is the time index and δ̂
(t)

c is the candidate

of the initial phase selected in the c-th macro cell at the t-th time index, the

sum of the tentative throughputs given by the selected initial phases at the

c-th macro cell, T̄ (δ̂
(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 ), is calculated from Eq.

(2.23) for all of δc(0 ≤ δc ≤ (1−xE)
(︁
NU

NS

)︁
−1). The maximum selection selects

phase of the sequence with the largest expected throughput. The maximum

selection is presented as

δ̂
(t)

c = arg max
δ̂c

T̄ (δ̂
(t)

1 , · · · , δ̂
(t)

c−1, δ̂c, δ̂
(t−1)

c+1 , · · · , δ̂
(t−1)

7 ). (2.24)

Since this criterion selects the initial phases sequentially, the system through-

put may fall into a local optimum. The throughput estimation is conducted

NRB · (1− xE) ·
(︁
NU

NS

)︁
times at each RB allocation.

2.2.6.3 UE Set Selection in RR Allocation Sequence with Rein-
forcement Learning

In the proposed scheduling, the RR allocation sequence is modified for each

RB because the channel response in each RB is different according to the

frequency selectivity of a fading channel. The expected throughput for each

UE set in each RB is calculated from Eq. (2.17) with maximum selection

because the initial phase selections with maximum selection are exhaustively
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searched. In the proposed RR scheduling, the reinforcement learning is ap-

plied to the RR allocation sequence in order to eliminate UE combinations

that suffer from larger interference. The CUs select the action at with the

largest Q-value. In other words, the CUs eliminate the UE combinations

under severe interference at every timeslot after the initial phase selection.

The RR allocation sequence in the r-th RB at the t-th timeslot is ex-

pressed as the state, srt . The elimination of the specific UE combination in

the r-th RB at the t-th timeslot is the possible action of CU, and it is denoted

as art . The predicted Q-value for the next timeslot in the r-th RB at the t-th

timeslot is given as Qt(s
r
t+1, ar). The Q-value of the action, art , for the state,

srt , is given as

Qt(s
r
t , a

r
t )← (1− α)Qt(s

r
t , a

r
t ) + α[Rr

t+1 + γmax
ar

Qt+1(s
r
t+1, a

r)], (2.25)

where α is the learning rate that indicates the impact of the current and

past learning, γ is the discount rate, and Rr
t+1 is the reward value for tran-

sition to the state, srt+1. Rr
t+1 is calculated from the estimation throughput

averaged over UE combinations in the allocation sequence except for the UE

combination that is eliminated in the action, art .

The possible transition state at the t-th timeslot is shown in Fig. 2.22.

Suppose that the length of the allocation sequence for the initial state, srt ,

is L, the CU takes an action, art , which is the elimination of a UE set. The

next state after the initial action is expressed as srt+1 whose length of an

allocation sequence is L − 1 and the reward for the initial action, Rr
t+1, is

calculated from the remaining UE sets. The UE combination that results in

the smallest system throughput is excluded according to the action, art+1, and
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the reward, Rr
t+2, is derived from the state, srt+2. Rr

t+2 is the reward value

for the transition to the state, srt+2, at the t-th timeslot and corresponds to

the average estimation throughput when the UE combination that realizes

the smallest system throughput is excluded. The CU takes the action with

the largest Q-value.
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Figure 2.22: UE set elimination with reinforcement learning.
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2.2.7 Numerical Results
2.2.7.1 Simulation Conditions

Table 2.3: Simulation Conditions.

Inter-antenna distance 50, 100, 150, 200 m
Minimum distance
between UE and TP 5 m
Height of TP 10 m
Height of UE 1.5 m
Carrier frequency 4.65 GHz
System bandwidth 72 MHz
RB bandwidth 720 kHz
No. of RBs 100
No. of subcarriers
per RB 12
Transmit power 30 dBm
LOS probability PLOS = min (18

d
, 1){1− exp(− d

dLOS
)}+ exp(− d

dLOS
)

d:Distance from an UE to a TP
Path loss LLOS = 22.0 log10(d) + 28.0 + 20 log10(fc) dB

LNLOS = 36.7 log10(d) + 22.7 + 26 log10(fc) dB
fc: Carrier frequency

Shadowing
standard deviation 4 dB
Channel model LOS:Rician path + 15-path uniform Rayleigh

(K-factor:10)
NLOS:16-path uniform Rayleigh

Receiver noise density -174 dB/Hz
Noise figure 9 dB
Allocation 2-user allocation
No. of UEs
per macro cell 5, 10, 15, 20
Temperature
coefficient K 100, 1000, 10000
Ratio of eliminated
UE sets in sequence 0 ≤ xE ≤ 0.8
Weight for PF w1 − w2 0 ≤ w1 − w2 ≤ 1.0
Weight for PF w2 1.0
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The simulation conditions are shown in Table 2.3. The inter-antenna dis-

tance is selected from 50, 100, 150, or 200 meters. The height of the TPs is

10 meters and the height of the UEs is 1.5 meters. The carrier frequency is

4.65 GHz, the system bandwidth is 72 MHz, and the RB bandwidth is 720

kHz. The number of RBs is 100 and the number of subacarriers per RB is 12.

The transmit power per antenna is set to 30dBm. The amounts of average

propagation loss, LLOS and LNLOS, are different between LOS and non-line-

of-sight (NLOS) conditions. In Section 2.1, the propagation environment was

treated to be LOS when the UE that are emitting or receiving interference

are located within the same macro cell. Conversely, the propagation environ-

ment was assumed to be NLOS when they are in different macro cells. This

condition is unfair because UEs that are very close to each other are treated

as NLOS environments if they are in the different cells. Therefore, in this

section, the propagation environment is stochastically determined according

to the distance between UEs. The LOS probability model and the path loss

model are the same as those in [76, 77]. The shadowing deviation is 4dB.

The first Rician fading path and following 15 uniform Rayleigh paths are as-

sumed in the LOS condition and a 16-path uniform Rayleigh fading channel

is assumed in the NLOS condition. The K-factor in the LOS model is 10.

The receiver noise density is set to -174 dB/Hz and the noise figure is 9dB.

Two user allocation (NS = 2) is assumed. The number of UEs per macro cell

is 5 and 10 and the uniform user distribution is applied. The temperature

coefficient, K, is set as 100, 1000, or 10000. The average system throughput

per subcarrier per cell is evaluated for different phase selection criteria unless

it is specified. The ratio of the eliminated UE allocation sequences, xE, is
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varied from 0.0 to 0.8. The weight for PF scheduling, w2, is set to 1.0 while

the weight, w1 − w2 are varied from 0.0 to 1.0.

2.2.7.2 Effect of Number of UEs

The system throughput versus FI is shown in Figs. 2.23 and 2.24. The

number of UEs is 5 and 10. The ratio of eliminated UE sets in allocation

sequences, xE, is varied from 0.0 to 0.8. The inter-antenna distance is 100

meters. The curves in these figures show that the fairness of the weighted PF

scheduling is superior to that of the proposed RR scheduling if the weight

for PF is larger than 0.3. However, the performance of the proposed RR

scheduling is as equivalent as that of the weighted PF scheduling in the

lower estimated throughput region if the weight for PF is lower than 0.3.

Especially maximum selection exceeds the weighted PF scheduling in terms

of both of the fairness and the throughput. In addition to the improvement of

the system performance, the computational complexity of the proposed RR

scheduling is much lower than that of the weighted PF scheduling. Therefore,

the cellular system operators can adopt the proposed RR scheduling when

they do not overestimate the fairness among UEs, while they can adopt

the PF scheduling when they provide a service that requires high degree of

fairness, such as traffic whose QoS class identifier is classified to a guaranteed

bit rate service. In addition, the conventional RR scheduling can be selected

when the computational resources are strictly limited. The range of the

system throughput is larger as the number of UEs increases. That is because

the candidates of UE sets increase and the UE sets with lower inter-cell

interference can be allocated.
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Figure 2.23: System throughput vs. FI (NU=5, inter-antenna distance 100
m).

w1 - w2= 1.0, 0.8, 0.6, 0.4

 0.2, 0.1. 0.0

xE = 0.0, 0.1, 0.2,

0.3, 0.4, 0.6, 0.8

Figure 2.24: System throughput vs. FI (NU=10, inter-antenna distance 100
m).
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The CDF of user throughputs for NU = 5 is shown in Figs. 2.25 and

2.26. The points surrounded by the red circle in Fig. 2.23 are compared.

The inter-antenna distance is 100 meters. The ratio of eliminated UE sets,

xE, is 0.1 and the computational complexity of the proposed RR scheduling

is 90% of that of the PF scheduling. The weight for PF scheduling, w1−w2,

is 0.2. The CDF curves of the worst and best user throughputs are shown

in Fig. 2.25 and those of the 2nd best and 2nd worst user throughputs are

shown in Fig. 2.26. It is shown in Fig. 2.25 that the user throughput for

the worst user is equivalent in the proposed RR scheduling and the weighted

PF scheduling. The user throughput for the best user of the proposed RR

scheduling ranges narrower than that of the weighted PF scheduling. It is

also shown in Fig. 2.26 that the user throughput for the 2nd worst user of

the maximum selection is as equal as that of the weighted PF scheduling.

The user throughput for the 2nd best user of the maximum selection is better

than that of the weighted PF scheduling.
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Figure 2.25: Best and worst user throughput (xE = 0.1, w1 − w2 = 0.2,
inter-antenna distance 100 m).
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Figure 2.26: 2nd best and 2nd worst user throughput (xE = 0.1, w1 − w2 =
0.2, inter-antenna distance 100 m).
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The CDF of user throughputs for NU = 10 is shown in Figs. 2.27 and

2.28. The points surrounded by the red circle in Fig. 2.24 are compared.

The inter-antenna distance is 100 meters. The ratio of eliminated UE sets,

xE, is 0.6 and the computational complexity of the proposed RR scheduling

is 40% of that of the PF scheduling. The weight for PF scheduling, w1−w2,

is 0.1. The CDF curves of the worst and best user throughputs are shown

in Fig. 2.27 and those of the 4th best and 4th worst user throughputs are

shown in Fig. 2.28. It is shown in Fig. 2.27 that the user throughputs for

the best and worst user of the weighted PF scheduling exceed those of the

proposed RR scheduling. However, the user throughput for the 4th best user

of the proposed RR scheduling is much larger than that of the weighted PF

scheduling.

The reason of the above explained tendencies is that the weighted PF

scheduling tends to allocate to the worst user in order to take the fairness

among UEs into account while the proposed RR scheduling allocate more to

the next best and worst users according to the shortened RR sequences in

which the UE sets with lower throughput are eliminated.
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Figure 2.27: Best and worst user throughput (xE = 0.6, w1 − w2 = 0.1,
inter-antenna distance 100 m).
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Figure 2.28: 4th best and 4th worst user throughput (xE = 0.6, w1−w2 = 0.1,
inter-antenna distance 100 m).
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2.2.7.3 Effect of Inter-antenna Distance

The system throughput versus FI is shown in Figs. 2.29, 2.30, 2.31, and

2.32 for different inter-antenna distances. The inter-antenna distances are

50, 100, 150, and 200 meters, respectively. The number of UEs is 10. The

ratio of eliminated UE sets in allocation sequences is varied from 0.0 to 0.8.

Regardless of the inter-antenna distance, as the weight for PF scheduling and

the ratio of eliminated UE sets in allocation sequences increases, the system

throughput improves and the fairness deteriorates. This is because the inter-

cell interference is significant if the inter-antenna distance is small. According

to the increase of the inter-antenna distance, the fairness deteriorates and the

system throughput improves. The increase in distance from TPs and cell-

edge UEs leads to the larger difference of the throughput among UEs and

deteriorates the fairness.
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Figure 2.29: System throughput vs. FI (NU=10, inter-antenna distance 50
m).
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               0.2, 0.1. 0.0

Figure 2.30: System throughput vs. FI (NU=10, inter-antenna distance 100
m).
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The performance of the weighted PF scheduling is superior to that of

the proposed RR scheduling as shown in Fig. 2.29 when the inter-antenna

distance is 50 meters. One of the proposed RR scheduling, the maximum se-

lection, surpasses the weighted PF scheduling in terms of both of the fairness

and the throughput in Fig. 2.30 if the weight for PF scheduling is lower than

0.3 and the inter-antenna distance is 100 meters. The other criterion of the

proposed RR scheduling also realizes better performance than the weighted

PF scheduling as shown in Figs. 2.31 and 2.32 as the inter-antenna distance

increases to 150 and 200 meters. It is also the same reason that the weighted

PF scheduling tends to allocate to the worst user in order to take the fairness

among UEs into account while the proposed RR scheduling allocate more to

the next best and worst users. This tendency is more significant as the range

of the throughputs of UEs enlarges as the inter-antenna distance increases.

The estimated throughput takes no inter-cell interference into account and is

not accurate if the inter-antenna distance is small. That is why the weighted

PF scheduling is superior to the proposed RR scheduling in Fig. 2.29.
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Figure 2.31: System throughput vs. FI (NU=10, inter-antenna distance 150
m).
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Figure 2.32: System throughput vs. FI (NU=10, inter-antenna distance 200
m).
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2.2.8 Conclusions

In this section, the proposed RR scheduling incorporated the initial phase

selection and user set elimination in allocation sequence in DAT with BD

pre-coding. In UE set elimination scheme, the UE sets that expect the low-

est throughputs are eliminated. The initial phase selection criteria in RR

scheduling are also applied on top of the proposed scheme; the maximum se-

lection, the random selection, and the selection with Gibbs sampling. Here,

the performance of the proposed RR scheduling depends on the cellular sys-

tem environment such as the number of UEs, inter-antenna distance, and

the parameters of the proposed scheme. The operators of the cellular system

appropriately adopt the user scheduling scheme according not only to the

cellular system environment and but also to their resource management poli-

cies. Numerical results obtained through computer simulation have shown

that the proposed RR scheduling, especially maximum selection, is superior

to the weighted PF scheduling in terms of the computational complexity, the

fairness among UEs, and the throughput if the weight for PF scheduling is

lower than 0.3 and the inter-antenna distance is lager than 100 meters. That

is because the proposed RR scheduling mitigate intra-cell interference with

MU-MIMO technology with BD algorithm and eliminates the UE sets with

lower throughputs while the weighted PF scheduling takes the fairness of

each UE separately.
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2.3 Conclusions of Chapter 2

In chapter 2, the improved RR scheduling for the DAT has been proposed.

In the proposed scheduling scheme, the key idea is the initial phase selection

of the allocation sequence to decrease the inter-cell interference and the UE

set selection of the allocation sequence to decrease the intra-cell interference.

The computational complexity of the proposed RR scheduling is lower than

that of the PF scheduling in terms of the number of times to calculate the

estimated throughput. Numerical results show the proposed RR scheduling

scheme that adopts the maximum selection and the UE set selection achieves

higher performance than the weighted PF scheduling under the specific con-

ditions.
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Chapter 3

Resource Allocation for
Non-terrestrial Network

3.1 Introduction

The escalating demands of satellite communications (SATCOM) underscore

its vital role in today’s world. The Satellite Industry Association (SIA)

disclosed that the total revenue of the global space economy reached 386

billion dollars in 2021, with satellite services, ground equipment, satellite

manufacturing, and the launch industry contributing 118 billion dollars, 142

billion dollars, 6.2 billion dollars, and 5.7 billion dollars, respectively [78].

To nurture this vast market’s growth, enhancing affordability is key, which

necessitates the reduction of cost per bps for end users by improving capacity

improvement per satellite [79].

A traditional satellite has a single or a few beams that covers the wide

geographical region in the C/Ku band. In the conventional SATCOM sys-

tem, the system throughput is low because of the limited frequency band is

used for the wide area. Meanwhile, the HTSs have multiple beams and each

beam covers the limited narrow area and the frequency reuse is densely con-
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ducted in the higher frequency band, i.e. Ka/Q/V/W band [80, 81]. HTSs

realize the high capacity through the advanced digital signal processing and

the broadband bandwidth [81]. Next-generation HTSs are expected to bring

the lower cost per bit by digital processing technologies. They offer further

advanced features such as adjustable bandwidth allocation to beams, vari-

able beam shape, 100-1000 multi-beams, higher frequency band for wider

frequency bandwidth, and site diversity technology [81–84].

Research interest in the HTSs has intensified in recent years due to the

demands for high-rate communication, reduced launch costs, and improved

performance of satellite equipment. This tendency in scholarly attention is

evidenced by studies that have explored various aspects of resource allocation

for the HTSs [85–87]. One notable study [85] highlights a resource allocation

scheme based on digital beamforming (DBF) technology and the authors

proposed a fusion control as to power resource allocation for satisfying the

geographic distribution of traffic requirements. In [86, 87], the optimization

problem for user-carrier assignment, beam hopping (BH) pattern, and il-

lumination duration was modeled as a mixed integer linear programming

problem for a HTS system utilizing a BH and a carrier aggregation (CA).

A joint BH-CA scheme was proposed in order to realize an efficient joint

beam illumination pattern for BH and an aggregation strategy for CA. The

authors of [86] employ a beam pattern in which a set of two adjacent beams

uses different polarization and the set covers the whole system bandwidth,

which implies no illumination pattern is selected if the same polarization

and frequency are assigned to the beams in the adjacent areas. In these

researches [85,86], the frequency bandwidth allocated to each beam is fixed.
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The advent of the digital channelizer has brought flexible frequency re-

source allocation in HTSs [49, 51, 52]. To utilize the frequency flexibility of

HTSs and enhance spectral efficiency (SE), the frequency resource allocation

schemes are studied [32, 33, 53, 54, 88–92]. The authors in [53] have lever-

aged a multi-objective deep reinforcement learning to resolve time-frequency

resource allocation issues. The study in [54] decomposes resource manage-

ment into a two-stage machine learning approach, considering beam-domain

resource configuration including power and gain control, and user-domain

resource configuration focusing on bandwidth allocation with soft frequency

reuse. In [32, 33], a beam cluster arrangement is designed, consisting of four

beams with distinct frequencies and polarizations, and the satellite operation

is planed in terms of the effectiveness of the frequency flexibility. In addition,

the frequency resource allocation was modeled as a time-series problem to

realize the effective assignment and reduce the number of control times. The

authors of [88] have compared multiple algorithms for flexible payload ar-

chitectures for dynamic resource management in terms of performance, com-

plexity, and latency. However, the fairness among user equipments (UEs) are

not considered in [32, 33, 53, 54, 88].

The study in [89] formulated an optimization problem and proposed both

carrier and power assignment scheme for minimizing the sum of transmit

power and allocated bandwidth for a next generation broadband geostation-

ary earth orbit (GEO) satellite under the assumption that the atmospheric

loss for the considered broadband frequency bandwidth is approximately sim-

ilar. In [90, 91], a radio resource management scheme was proposed for the

payload with bandwidth flexibility and the results show that the flexible
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payload with the proposed management scheme is more efficient than the

conventional payload in terms of the capacity and the fairness. However,

the proposed scheme in [90] employs a simulated annealing and the amount

of change in the number of chunks is limited to -1, 0, or 1. In [92], the

authors proposed a channel capacity fairness carrier allocation (CCFCA) al-

gorithm in order to ensure fairness and system communication capacity. The

UEs with the larger difference between the required capacity and the actual

capacity are assigned with priority in the algorithm. The algorithm is not

optimized for the discrete beam allocation while it can be applied with the

low complexity. The resource allocation scheme with the CCFCA algorithm

is implemented as a reference scheme in this chapter.

In this chapter, we apply reinforcement learning to the frequency resource

allocation problem concerning the beam-indexes-series Markov chain with

the objective of achieving a balance between the system throughput and the

fairness among UEs.

The contribution of the paper can be demarcated into two segments.

First, the frequency resource allocation problem to beams is modeled not as

a time-series finite Markov decision process (MDP) but as a beam-indexes-

series finite MDP because the allocated bandwidth of the specific beam de-

pends on that of the adjacent beams. A Q-learning algorithm is employed to

maximize the total reward of the combinations of the allocated bandwidth to

each beam. The immediate reward is calculated using a dynamic program-

ming (DP) algorithm for optimal resource allocation of links formulated as

a 0-1 knapsack problem. The evaluation values of the immediate reward are

entirely distinct when the different policies of a network operation center
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(NOC) are adopted even if the frequency resource allocation to all beams

and links is conducted in the same manner. Therefore, the second contribu-

tion of the paper is to propose a combined evaluation function for realizing

the balanced resource allocation in terms of the system throughput and the

fairness among UEs.
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Figure 3.1: Overview of assumed SATCOM environment.

3.2 Assumed Environment

In this section, we delineate the configuration of the bent-pipe high through-

put satellite in SATCOM, incorporating the digital channelizer. Subse-

quently, we introduce the system model.

3.2.1 System Configuration

The SATCOM environment is visualized in Figure 3.1. In our assumed sys-

tem, a bent-pipe GEO satellite establishes forward links from GWs to UEs

through multiple spot beams in user links and several beams in feeder links.

The multi beams in the user links are fixed to the geographic locations and

the fluctuating traffic demand is based on the region illuminated by each

beam. The next-generation bent-pipe HTS incorporates a digital channel-

izer, facilitating adaptive frequency resource allocations and dynamic beam
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assignments to cater to evolving traffic demands. In the assumed GEO SAT-

COM environment, the propagation model is static because of the LOS envi-

ronment and the frequency selective fading is not taken into account. The ar-

chitecture of the digital channelizer encompasses demultiplexers (DEMUXs),

switches, and multiplexers (MUXs) [49]. After conversion to digital signals

via analog-to-digital converters (ADCs), uplink signals are demultiplexed in

the DEMUXs. Each demultiplexed signal is switched to the desirable fre-

quency, routed through the MUX, and subsequently processed by the digital-

to-analog converter (DAC). The presence of the digital channelizer augments

the SE, enabling individual traffic to be allocated to the preferred frequency,

in case that there is no overlapping frequency resource in neighboring beams.

Regarding service typologies for NTN user UEs within feeder links, they

are categorized into fixed satellite services and mobile satellite services, the

latter of which includes aircraft and maritime vessels equipped with active

phased array antennas. Each NTN UE is outfitted with modems compliant

with the DVB-S2X standards, resulting in varied modulation and coding

(MODCOD) schemes based on each UE environment.

Satellite resource operations, inclusive of resource allocations within the

transponder on the GEO-HTS, are planned in the NOC. Satellite operators

predict traffic demands and channel states based on UE location-specific

environmental conditions, encompassing factors like rainfall, cloud cover, and

path loss. Such predictive intelligence is input to the NOC and utilized

for satellite operation plans. The next-generation HTS, equipped with its

digital channelizer, employs the Ka-band multi-beam to enhance capacity.

This facilitates support for diverse applications, including but not limited
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Figure 3.2: Frequency bandwidth allocated to HTS multi-beam.

to terrestrial network backhaul communication, aerial and maritime non-

terrestrial communication, and emergent communication during disasters.

3.2.2 System Model

In the downlink of user links, the frequency bandwidth is denoted as W

MHz. The number of beams is represented by B and the number of UEs in

the beam b is given by Nb as shown in Fig. 3.2. The frequency bandwidth

allocated to beam b is denoted by ab MHz. The sum of the allocated frequency

bandwidth in adjacent beams should not exceed the system bandwidth W

MHz. It should be noted that a frequency reuse method for satellite systems
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is described in TR 38.821 of Release 16 [93]. In the circularly polarized

wave, a right-handed circularly polarized wave and a left-handed circularly

polarized wave can be used selectively, and interference between the beams

can be reduced considerably using different circularly polarized waves for the

adjacent beam sequences. The constraint for resource allocation to beam b,

C1, is represented as follows:

C1 :

{︄
ab−1 + ab ≤ W for b ≥ 2,

ab + ab+1 ≤ W for b ≤ B − 1.
(3.1)

The request throughput of UE ub in the beam b is represented as qTH
ub

and

is described by the relation qTH
ub

= qBW
ub

ηub
, where qBW

ub
signifies the requested

frequency bandwidth, and ηub
represents the throughput per hertz of UE ub.
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Figure 3.3: Example of link allocation.

3.3 Allocation Scheme of Frequency Resources

In this section, the allocation scheme of frequency resources is proposed.

First, we propose the allocation scheme of frequency resource to links with

DP. Second, the allocation scheme of frequency resources to beams with

the Q-learning algorithm is proposed. In addition, an immediate reward

maximization scheme, a full search scheme, and the CCFCA algorithm in [92]

are explained for references.

3.3.1 Resource Allocation of Links

As mentioned in the system configuration, even within the same beam b,

different UEs adopt different MODCODs based on link states. The ideal

bandwidth allocation for beam b depends on the evaluation criteria as illus-
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trated in Fig. 3.3. To maximize the number of allocated UEs, it is preferable

to allocate UEs requiring smaller frequency bandwidths. Conversely, to en-

hance system throughput, UEs with a higher SE should be prioritized.

Furthermore, under the condition of allocated bandwidth ab, this fre-

quency resource allocation quandary for UEs can be equated to a 0-1 knap-

sack problem, which belongs to non-deterministic polynomial-time hardness.

f(xb) = max

Nb∑︂
ub=1

vub
xub

, (3.2)

subject to
Nb∑︂

ub=1

qBW
ub

xub
≦ ab,

xub
∈ {0, 1},

ub ∈ {1, · · · , Nb},

where xub
is the variable that represents whether the UE ub is allocated to

the link and can take 0 or 1. The set of feasible solution is the set of Boolean

vectors xb = {x1, · · · , xNb
}. The characteristics of systems are influenced by

the weight vub
. To maximize system throughput, it is set as vub

= qTH
ub

, and

to maximize the number of allocated UEs, it is set as vub
= 1. Taking into

account all UE combinations leads to a complexity of O(2Nb). Nevertheless,

the 0-1 knapsack problem is known to have efficient solutions. For the target

allocation problem, we adopt the DP [94,95]. The mathematical formulation

for the knapsack problem by Bellman’s principle of optimality is given as

fub
(nI) = max(vub

+ fub−1(nI − qBW
ub

), fub−1(nI)), (3.3)

where ub ∈ {1, · · · , Nb} is the UE index, n ∈
{︁
0, · · · , W

I

}︁
is the resource

index, I represents the frequency interval of the digital channelizer, and
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Figure 3.4: Dynamic programming table for link allocation.

nI would indicate the discrete allocated bandwidth. Table-based dynamic

programming is shown in Fig. 3.4. The row indicates the UE index for beam

b and the column indicates the allocated bandwidth, ab MHz, to beam b. In

accordance with Eq. (3.3), each cell in the ub-th row and the n-th column

is recursively filled with either the sum of the evaluation value vub
for UE

ub and the maximum evaluation value up to UE ub − 1 under the allocated

bandwidth less than nI − qBW
ub

or that up to UE ub − 1 under the allocated

bandwidth less than nI. The larger evaluation value is selected. In other

words, it is determined if assigning UE ub increases the evaluation value. The

rows of the table is filled from left to right, and the table is scanned from

top to bottom. Finally, the solution for all UEs in beam b, UEs up to Nb,

under the allocated bandwidth ab to beam b is obtained from the bottom

right cell in the table. To summarize, the DP technique breaks down the

link allocation problem into simpler subproblems, and the solutions of the

subproblems are determined recursively.

The algorithm for the DP is shown in Algorithm 1. The maximum
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evaluation up to UE ub under the allocated bandwidth ab is represented

as V [ub, ab], which equals to fub
(ab) in the table in Fig. 3.4. Algorithm

1 provides the optimal combination xopt
b of the allocated UEs under the

allocated bandwidth ab.

xopt
ab

= {xopt
1 , . . . , xopt

ub
, . . . , xopt

Nb
}. (3.4)

Algorithm 1 Dynamic Programming
1: Get the information of the allocated bandwidth ab to the beam b and the

request bandwidth qBW
ub

and the allocation value vub
of each UE in the

beam b
2: ub = 1
3: while ub ≦ Nb do
4: if qBW

ub
≥ ab then

5: V [ub, ab] = V [ub − 1, ab]
6: else
7: V [ub, ab] = max (V [ub − 1, ab],
8: V [ub − 1, ab − qBW

ub−1] + qBW
ub

)
9: end if

10: ub = ub + 1
11: end while

3.3.2 Resource Allocation of Beams

Equation (3.1) indicates that the frequency bandwidth allocated in the pre-

vious beam dictates the maximum frequency bandwidth in the current beam

b. Consequently, the resource allocation across beams can be regarded as

a Markov process. Furthermore, this Markov process can be modeled as

a beam-indexes-series finite MDP, especially considering that the frequency

interval of the digital channelizer is discrete. The allocated frequency band-
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width in beam b, denoted as ab, is defined as:

ab = nI,

n ∈
{︃
0, · · · , W

I

}︃
,

(3.5)

where I represents the frequency interval of the digital channelizer. There-

fore, the units of the allocated bandwidth take discrete values and the re-

source allocation of beams can be attributed to a finite allocation problem

to make no interference in adjacent beams.

The state S and action A for beam b are defined as:

S : sb ∈
{︂
s0, s1, · · · , sn, · · · , s

W
I

}︂
, (3.6)

A : ab ∈ {0, I, · · · , nI, · · · ,W}, (3.7)

where the state sb for beam b corresponds to the frequency bandwidth allo-

cated in the previous beam b− 1.

To tackle this finite MDP, the Q-learning algorithm is employed. If the

action ab is selected in the beam b and the state is transitioned from sb to

sb+1, Q(sb, ab) is updated as follows:

Q(sb, ab)← (1− α)Q(sb, ab) + α
(︁
rb + γmaxab+1

Q(sb+1, ab+1)
)︁
,

(3.8)

where α is the learning rate, γ the discounting rate, and rb denotes the

immediate reward for the action ab in the state sb. The determination of

immediate reward rb is contingent on the policy of NOC. The reward that

maximizes the system throughput is given by the policy ΦTH while the reward

that maximizes the number of allocated UEs are given by the policy ΦUE. In
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each condition, the reward rb is represented as

ΦTH : rb =

⎧⎪⎪⎨⎪⎪⎩
∑︁Nb

ub
qTH
ub

xub
− φ

(︂
ab −

∑︁Nb

ub
qBW
ub

xub

)︂
if C1 is satisfied,

−1 if C1 is not satisfied,
(3.9)

or

ΦUE : rb =

{︄∑︁Nb

ub
xub

if C1 is satisfied,
−1 if C1 is not satisfied,

(3.10)

This chapter also aims to simultaneously optimize both functions using a

combined evaluation function, resulting in a more equitable outcome. Under

this policy, rb is expressed as:

ΦCMB :

rb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ATH

(︃∑︁Nb

ub
qTH
ub

xub

)︃
+AUE

(︃∑︁Nb

ub
xub

)︃
if C1 is satisfied,

−1 if C1 is not satisfied.

(3.11)

where the immediate reward is -1 if the constraint by Eq. (3.1) is not satisfied.

Each beam has its own Q-table because the condition such as the number

of UEs, the requested throughputs, and the MODCOD of each UE are quite

different in all beams. Figure 3.5 shows the procedure to update the Q-table
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corresponding to beam b. Initially, the present action ab gets selected, which

stems from the current state sb influenced by the previous action ab−1. This

selection is subject to the restriction that frequency resources should not

overlap between adjacent beams. Subsequently, using the DP algorithm, the

link of each UE is allocated within the bandwidth ab allocated to beam b.

The succeeding step is to calculate the reward rb according to the policy of

NOC. Last, based on Eq. (3.8), the Q-table undergoes an update. Assuming

the number of the episodes is E, the number of reward calculations is given

by EB.

In addition, the proposed resource allocation is not required to be op-

erated run in real-time. In the assumed SATCOM environment, the beam

arrangement is fixed to a specific geographical location, because the transpon-

der of the GEO satellite is controlled for frequency resource allocation and

it remains stationary relative to the surface of the Earth. Therefore, the use

of traffic data for a specific region as training data allows for the updating

of each Q-table to match the region illuminated by each beam during the

preliminary learning phase as shown in Fig. 3.5. Actions are selected based

on this Q-table during real-time control. In order to apply the proposed re-

source allocation scheme to the non-geostationary earth orbit satellite, it is

also necessary to provide geographical data, time data, or satellite orbit data

as training data.

Here, we introduce three reference schemes: the immediate reward max-

imization, the full search, and the CCFCA algorithm in [92].

In the immediate reward maximization scheme, every feasible action

within beam b is explored, subsequently selecting the action offering the
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best immediate reward. The selected action in the beam b, a′b is described as

a′b = arg max
ab

rb(ab). (3.12)

This evaluative process persists across all beams. In the immediate re-

ward maximization scheme, the number of reward calculations is given as

B
(︁
W
I
+ 1
)︁
.

The full search scheme explores the exhaustive combinations of actions

across all beams. Here, the prime focus is on identifying the set of actions

that yield the highest aggregate reward. Suppose that an action set for all

the beams is represented by a = {a1, · · · , aB}, the total reward R(a) is

expressed as

R(a) =
B∑︂
b=1

rb(ab). (3.13)

Therefore, the optimum action set a∗ is given by

a∗ = arg max
a

R(a). (3.14)

In the full search, the number of reward calculations is given as
(︁
W
I
+ 1
)︁B.

The study in [92], the CCFCA algorithm was proposed with objective

of reducing the computational complexity and ensuring QoS of the UEs. In

addition to being applied under different channel conditions of UEs, the al-

gorithm takes the fairness among UEs into account by changing the priority

of the UEs at each resource allocation phase. In this chapter, we introduce

CCFCA of the frequency resource allocation algorithm in [92] as the compar-

ison. The optimization objective function for the CCFCA algorithm is given

as follows:

min
1≤k≤K

(pTH
k − qTH

k ), (3.15)
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where K is the number of UEs in all the beams, and denoted as K =∑︁B
b=1

∑︁Nb

ub=1 1. Moreover, pTH
k is the actual throughput for UE k and qTH

k

is the requested throughput for UE k. Optimizing the objective function in-

dicates that the UEs with the greater difference between the actual through-

put and the requested throughput have higher priority to be allocated across

all the beams during the current allocation phase. This allocation metric is

applied iteratively in each allocation phase in order to ensure the fairness

among UEs.
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3.4 Numerical Results

In this section, computational simulation results are presented. First, simu-

lation conditions are shown. Then, the computational simulation results are

compared for the proposed resource allocation scheme with the Q-learning al-

gorithm, the full search scheme, the immediate reward maximization scheme,

and the resource allocation scheme with the CCFCA algorithm.

The FI is introduced to an evaluation of the fairness among UEs [74].

FI =
(︁∑︁B

b=1

∑︁Nb

n=1 q
TH
ub

)︁2
BNb

∑︁B
b=1

∑︁Nb

n=1(q
TH
ub

)2
. (3.16)

The fairness index ranges from 0 to 1, with values closer to 1 indicating

greater fairness.

3.4.1 Simulation Conditions

Table 3.1: Simulation parameters
Parameter value
System frequency bandwidth 500 [MHz]
Frequency interval of digital channelizer 50 [MHz]
Number of beams 5
Maximum number of UEs per beam 5
MODCOD scheme Table 3.2
Number of actions 11
Number of states 11
Learning rate 0.1
Discounting rate 0.9
Number of episodes 3000

Coefficient Combinations, (ATH, AUE)

(1 ,0), (0.01, 1),
(0.005, 1), (0.003, 1),
(0.002, 1), (0.001, 1),
(0.0005, 1), (0, 1)
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The simulation conditions are presented in Table 3.1. The system frequency

bandwidth is 500 MHz and the frequency interval of the digital channelizer

is set to 50 MHz. The number of beams is five, the maximum number of

the UEs per beam is five, and the MODCOD parameter sets which can be

taken by the the modems of UEs are shown in Table 3.2. The parameters

of the Q-learning algorithm, the learning rate and the discounting rate are

0.1 and 0.9, respectively, and the number of episodes is 3000. The number of

coefficient combinations (ATH, AUE) is eight. The NOC optimizes the system

throughput and the number of allocated UEs according to the policies ΦTH

and ΦUE in the coefficient combinations (1, 0) and (0, 1), respectively. When

the other coefficient combinations are given, the NOC performs the frequency

resource allocation to maximize the combined evaluation function.

Table 3.2: SE according to MODCOD in DVB-S2X [96]
MODCOD SE η [bps/Hz] MODCOD SE η [bps/Hz] MODCOD SE η [bps/Hz]
QPSK 2/9 0.434841 16APSK 3/5 2.370043 64APSK 32/45-L 4.206428
QPSK 13/45 0.567805 16APSK 3/5-L 2.370043 64APSK 11/15 4.338659
QPSK 9/20 0.889135 16APSK 28/45 2.458441 64APSK 7/9 4.603122
QPSK 11/20 1.088581 16APSK 23/36 2.524739 64APSK 4/5 4.735354
8APSK 5/9-L 1.647211 16APSK 2/3-L 2.635236 64APSK 5/6 4.936639
8APSK 26/45-L 1.713601 16APSK 25/36 2.745734 128APSK 3/4 5.163248
8PSK 23/36 1.896173 16APSK 13/18 2.856231 128APSK 7/9 5.355556
8PSK 25/36 2.062148 16APSK 7/9 3.077225 128APSK 29/45-L 5.065690
8PSK 13/18 2.145136 16APSK 77/90 3.386618 128APSK 2/3-L 5.241514
16APSK 1/2-L 1.972253 32APSK 2/3-L 3.291954 256APSK 31/45-L 5.417338
16APSK 8/15-L 2.104850 32APSK 32/45 3.510192 256APSK 32/45 5.593162
16APSK 5/9-L 2.193247 32APSK 11/15 3.620536 256APSK 11/15-L 5.768987
16APSK 26/45 2.281645 32APSK 7/9 3.841226 256APSK 3/4 5.900855

3.4.2 Performance Evaluation for No. of allocated UEs
and System Throughput Maximization

Figure 3.6 shows the average system throughput versus the number of episodes

for the Q-learning algorithm when the NOC adopts the policy that maximizes

the system throughput. The system throughput with the full search scheme
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is indicated by the green line in Fig. 3.6 and that with the immediate reward

maximization scheme is described by the orange line. The system throughput

with the Q-learning algorithm is presented by the blue line and is approach-

ing the maximum value as the number of episodes grows. The probability

of reaching the maximum throughput versus the number of episodes for the

Q-learning algorithm is shown in Fig. 3.7. In the other words, this is the

probability that the solution of the Q-learning algorithm and the immediate

reward maximization scheme reaches that of the full search scheme. The

probability of reaching the maximum throughput with the Q-learning al-

gorithm is finally around 50% when the number of episodes is 3000, while

that with the immediate reward maximization scheme is below 20%. This

is because the immediate reward maximization scheme only reach the op-

timal solution when the sum of the requested frequency in all the adjacent

beams is less than the system bandwidth 500 MHz or the immediate reward

maximization accidentally corresponds with the optimal allocation results.

On the other hand, the Q-learning algorithm are more inclined to find the

optimal solution because it explores the entire solution space.
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Figure 3.6: Average System throughput vs. number of episodes.

Figure 3.7: Probability of reaching maximum throughput vs. number of
episodes.
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Figures 3.8 and 3.9 respectively show the average number of allocated UEs

versus the number of episodes and the probability of reaching the maximum

number of allocated UEs versus the number of episodes when the NOC adopts

the policy that maximizes the number of allocated UEs. The average number

of allocated UEs with the Q-learning algorithm is closer to that of the full

search scheme when the number of episodes is 3000. The convergence to

the maximum number of allocated UEs in Fig. 3.8 is faster than that of the

system throughput in Fig. 3.6. In support of that, the probability of reaching

the maximum number of allocated UEs with the Q-learning algorithm is

over 80% when the number of episodes is 3000. This is because the large

number of MODCODs in Table 3.2 that each UE can adopt results in

a complicated allocation problem when the policy of NOC maximizes the

system throughput while the number of allocated UEs calculated from Eq.

(3.10) is the sum of the variables xub
represented by 0 or 1 in Eq. (3.3) when

the policy of NOC maximizes the number of allocated UEs.

105



Figure 3.8: Average number of allocated UEs vs. number of episodes.

Figure 3.9: Probability of reaching maximum number of allocated UEs vs.
number of episodes.
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3.4.3 Performance Evaluation for Combined Evalua-
tion Function

Figure 3.10 shows the system throughput versus the FI according to the

coefficient combinations (ATH, AUE) when the number of learning episodes is

3000. The blue and orange lines of the resource allocation schemes, which

respectively employs the Q-learning algorithm and the full search, indicate

a trade-off between the system throughput and the fairness that depends on

the the coefficient combinations (ATH, AUE). The resource allocation scheme

with the CCFCA algorithm is shown with the black point. The value of

the the system throughput is more significant when the ratio of ATH to

AUE is larger. The performance of the proposed resource allocation with

the Q-learning algorithm is closer to that of the full search compared to

the immediate reward maximization scheme and the resource allocation with

the CCFCA algorithm. The resource allocation with the CCFCA algorithm

shows greater fairness than immediate reward maximization scheme, while

the system throughput of the CCFCA algorithm is equivalent to that of

the reward maximization scheme. The proposed resource allocation exhibits

better performance than the allocation scheme with the CCFCA algorithm

in terms of the system throughput and the fairness when the number of

learning episodes for the Q-learning algorithm is 3000. In the following, the

numerical analysis using the coefficient combination (ATH, AUE) = (0.003, 1)

is performed.

Figure 3.11 shows the system throughput versus the FI according to the

number of episodes. As the number of learning episodes increases, it asymp-

totically approaches the optimum performance obtained by the full search.
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The system throughput of the proposed allocation scheme is consistently

higher than that of the immediate reward maximization scheme and the al-

location scheme with the CCFCA algorithm. This is due to the coordinated

policy of the NOC to emphasize the system throughput by employing the

coefficient combination (ATH, AUE) = (0.003, 1). Furthermore, the fairness

of the proposed allocation scheme becomes greater than that of the alloca-

tion scheme with the CCFCA algorithm when the number of the learning

episodes exceeds 1700.
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Figure 3.10: Average system throughput vs. FI.

No. of Episodes:

100 to 3000 in increments of 100

Figure 3.11: Average system throughput vs. FI ((ATH, AUE) = (0.003, 1)).
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A convergence performance is analysed as shown in Fig. 3.12 when the co-

efficient combination (ATH, AUE) is (0.003, 1). The evaluation function value

of the proposed resource allocation scheme with the Q-learning algorithm

converges at early episodes. Given sufficient episodes and training data, the

Q-learning algorithm will converge to the optimal action-value function. It is

important to reach a suboptimal solution with limited training data because

it is difficult to search the entire vast solution space when the channelizer

interval is fine or when considering the adaptation to NGSO satellites.

Figure 3.13 shows the distribution of evaluation function values of the

immediate reward maximization scheme and the Q-learning scheme for the

optimum solution by the full search. While the full search reaches the optimal

solution every trial, the other schemes do not necessarily reach. The optimum

solutions by the full search are linearly aligned and the evaluation function

values with the other schemes are below the line represented by full search.

The average evaluation function value with the full search is 21.91, that

with the Q-learning algorithm is 20.79, and that with the immediate reward

maximization scheme is 17.81: the average deterioration rate for the full

search of the evaluation function value with the Q-learning algorithm is 5.15%

while that with the immediate reward maximization scheme is 19.49%. The

standard deviation for the deterioration rate of the Q-learning algorithm is

4.93% and that of the immediate reward maximization is 13.75%. In other

words, The evaluation function values of the immediate reward maximization

are widely distributed while those of the Q-learning scheme are distributed

around the optimum value, which represents performance advantage of the

Q-learning scheme over the immediate reward maximization scheme.
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Figure 3.12: Convergence performance analysis.

Figure 3.13: Distribution of evaluation function value to full search.
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3.5 Conclusions of Chapter 3

In chapter 3, we proposed the allocation scheme of frequency resources to

beams with the Q-learning algorithm in HTS communication systems. The

resource allocation problem was modeled as the beam-indexes-series finite

MDP. In addition, the frequency resource allocation to links was solved by

the DP algorithm and the Q-table was updated based on the reward. The

proposed resource allocation scheme does not need the real-time learning

and has low computational complexity for the actual operation because the

Q-table is preliminarily trained for the region illuminated by each beam.

The combined evaluation function to the frequency resource allocation prob-

lem also has been proposed. The NOC conducts the resource allocation

of beams and links with the Q-learning algorithm and the DP in the re-

source allocation problem. Numerical results obtained through the com-

puter simulation show that the proposed resource allocation scheme with

the Q-learning algorithm using the combined evaluation function reaches the

suboptimal solution, compared to the immediate reward maximization and

the resource allocation scheme with the CCFCA algorithm introduced as

the comparison scheme. The proposed scheme with the coefficient combina-

tion (ATH, AUE) = (0.003, 1) is superior to other resource allocation schemes

in terms of the system throughput and the fairness among UEs when the

sufficient number of learning episodes is provided. The value distribution

compared to full search show that most of the evaluation function values of

the proposed scheme is distributed around the optimal solution obtained by

the full search.
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Chapter 4

Overall Conclusions

The integration of the TN and the NTN is expected in the 6G mobile com-

munication system. The resource allocation schemes under the condition of

the limited frequency resources is essential for both the TN and the NTN

in order to improve the SE and decrease the bit per cost. In this disserta-

tion, the user scheduling scheme in DAT for TN and the resource allocation

scheme in next-generation HTS for NTN were investigated. The mitigation

of the interference in the assumed system is the key issue of the dissertation.

The inter-cell interference and the intra-cell interference were mitigated by

the initial phase selection and the UE set selection, respectively, in the DAT

system. The interference between the beams was mitigated by the frequency

resource allocation to beams in the next generation HTS system using the

digital channelizer. It is significant to operate the three-dimensional fre-

quency resources between the different systems in order to integrate the TN

and the NTN due to some overlapping frequency bands allocated to them.

In [97, 98], spectrum sharing technologies for the SATCOM system and the

TN are shown and can be applied to the other NTN systems. There are

two major steps for the spectrum sharing, the spectrum awareness and the
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spectrum exploitation. The spectrum awareness is to be aware of the sur-

rounding radio environment and the spectrum exploitation is to effectively

exploit the available spectrum obtained through the spectrum awareness.

The solid way of the spectrum awareness is based on a database con-

cept, such as Licensed Shared Access [99] and Spectrum Access System [100].

There is a primary system that is prioritized in the assumed frequency and

a secondary system that is not prioritized. The primary system registers

the operation schedule and the secondary system obtains the information

from the database. Second, a spectrum sensing technology can realize the

autonomous spectrum sharing for the secondary system [98]. The secondary

system has a sensing capability for the presence or the absence of the primary

system and exploits vacancies in time, frequency, and spatial domains. En-

vironmental parameters can be classified into two categories: those that do

not need data from the primary system and those that do, such as waveforms

and transmit power.

The spectrum exploitation can be classified into three types, “interweave”,

“underlay”, and “overlay” [101]. In interweave communication, the secondary

system only can exploit the spectrum in which the primary system does not

use and no interference to the primary system exists. In underlay commu-

nication, the coexistence of the primary system and the secondary system

is permitted only if the secondary system meets the strict interference crite-

ria. In overlay communication, these systems coexist in the same spectrum

and time and the signals of the secondary system interfere with the primary

system. The mitigation of the interference is realized by advanced coding

and transmission technologies at the secondary system. There is a trade-
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off between flexible resource management and technology readiness levels.

The overlay communication realizes higher spectrum efficiency and is hard

to implement while the interweave communication and the underlay commu-

nication enable lower spectrum efficiency and are relatively feasible.

The resource allocation in this dissertation treats the spectrum exploita-

tion in the single system. It is necessary to control resources such as the

power, the frequency bandwidth, and the beam shape under the limited com-

putational capability in the large-scale network. Our future task is to extend

the optimization of the resources for individual networks to those over the

multi-layered networks composed of the TN and the NTN and to contribute

the solution of the social issue through the establishment of a fundamental

technology in 6G mobile communication.

115



4.1 User Scheduling in DAT for TN

DAT is the promising system that can compensate the larger path loss in high

frequency band in 6G for TN. Although the PF scheduling achieves higher

system throughput and the fairness among UEs than the RR scheduling

and the Max-C/I scheduling, there is the challenge about the computational

complexity. This problem is stem from the huge feedback overhead at the CU

including CSI due to the numerous TPs. Chapter 2 introduces the improved

RR scheduling that requires low computational complexity.

In section 2.1, the initial phase selection for the RR scheduling has been

proposed. The conventional RR scheduling allocates UEs according to the

allocation sequence in order. That is why the RR scheduling hardly requires

computational complexity. However, no interference is not taken into ac-

count. The proposed RR scheduling sequentially selects the initial phases of

the sequence of the RR scheduling for each macro-cell to maximize the sys-

tem throughput. The inter-cell interference from the other macro-cells can be

estimated because the initial phase is determined in one of the seven macro-

cells at each timeslots and the allocation information of the other macro-cells

is centralized at the CU. Four different criteria have been proposed for the

initial phase selection; the full search, the random selection, the maximum

selection, and the selection with Gibbs sampling. It is shown that the max-

imum selection is closer to the optimum solution of the full search that the

other criteria.

To achieve higher system throughput and the fairness among UEs, it is

required to take intra-cell interference into account. In section 2.2, the UE
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set selection in the sequence of the RR scheduling has bee proposed. Some

UE sets in the RR sequence suffer from the severe intra-cell interference

due to the close arrangement of UEs allocated in the same RBs. As the

CU exhaustively searches the initial phases with the maximum selection, the

expected throughput for each UE set is obtained. The UE set with the highest

Q-value is eliminated from the sequence. The proposed RR scheduling shows

the superior performance than the weighted-PF scheduling in terms of the

system throughput, the fairness, and the computational complexity if the

weight for the PF scheduling is lower than 0.3 and the inter-antenna distance

is larger than 50 meters.

117



4.2 Frequency Resource Allocation in Next-
generation HTS for NTN

HTSs have the wide bandwidth using above Ka-band, provide the dense

multi-beam ,and realize lower cost per bit. In addition, the next-generation

HTSs are expected to be equipped with the digital channelizer that realizes

flexible resource allocation. Chapter 3 introduces the resource allocation

scheme for the next-generation HTS.

With the digital channelizers, the allocation bandwidth is shared with

the adjacent beams. That means the allocation bandwidth to the current

beam is influenced by that to the preceding beam. In this chapter, the

frequency resource allocation problem is modeled as the beam-indexes-series

finite MDP. The state is defined as a bandwidth allocation to the preceding

beam. The action is defined as the allocation bandwidth to the current beam

and the number of the actions is determined by the configurable frequency

interval of the digital channelizer.

The resource allocation problem is solved with the Q-learning algorithm.

In order to obtain the reward for the action, the resource allocation of the

links is conducted by the DP. The evaluation function of the reward is de-

pend on the policy of the NOC and the three policies are proposed for the

proposed resource allocation scheme with the Q-learning algorithm; the sys-

tem throughput maximization, the number of the allocated UEs maximiza-

tion, and the combined evaluation function. The proposed allocation scheme

reduces the computational complexity if the enough amount of the prior

training is conducted. Also, the immediate reward maximization scheme,
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the full search, and the resource allocation with the CCFCA algorithm are

introduced for the reference schemes. Numerical results obtained through

computer simulation show the proposed allocation scheme realizes the sub-

optimum solution in terms of the system throughput and the fairness.
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