
 

 

Correlation Based Signal Detection Schemes in 

Cognitive Radio 

 
 

August 2011 

 

 

 

 

 

 

 

 
A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy in Engineering 

 

 
  

 

 

 

 

 

Keio University  

Graduate School of Science and Technology 

School of Integrated Design Engineering 

 

 

ZHANG, Wensheng 
 

 



Contents

1 General Introduction 3

1.1 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cognitive Radio Definition and Framework . . . . . . . . . . 4

1.1.3 Current Developments of Cognitive Radio . . . . . . . . . . 5

1.1.4 Detect and Avoid Mechanism . . . . . . . . . . . . . . . . . 6

1.2 Signal Detection Schemes . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Non-cooperative Signal Detection Schemes . . . . . . . . . . 9

1.2.2.1 SC-FDMA Uplink System . . . . . . . . . . . . . . 9

1.2.2.2 Non-cooperative Signal Detection Model-A Practi-

cal Coexistence Model . . . . . . . . . . . . . . . . 11

1.2.2.3 Binary Hypothesis Test . . . . . . . . . . . . . . . 12

1.2.2.4 Hypothesis Test Logic and Detection Parameters . 12

1.2.2.5 Energy Detection . . . . . . . . . . . . . . . . . . . 14

1.2.2.6 Cyclostationarity Feature Detection . . . . . . . . . 16

1.2.3 Cooperative Signal Detection Schemes . . . . . . . . . . . . 18

1.2.3.1 Cooperative Signal Detection Schemes . . . . . . . 18

1.2.3.2 Cooperative Signal Detection Model . . . . . . . . 19

1.2.3.3 Hypothesis Test in Cooperative Signal Detection . 20

1.3 Motivation and Relations of This Research . . . . . . . . . . . . . . 21

1.3.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Research Relations of Non-cooperative Detection Schemes . 23

1.3.3 Research Relations of Cooperative Detection Schemes . . . . 24

1.3.4 Research Relations of Chapters . . . . . . . . . . . . . . . . 26

i



2 Low-complexity Cyclostationarity Feature Detection Scheme 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Coexistence Model and the SC-FDMA Uplink system . . . . . . . . 29

2.2.1 Coexistence Model of UWB Systems and IMT-Advanced

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 A Description of SC-FDMA Uplink System . . . . . . . . . . 30

2.3 Low-complexity Cyclostationarity Feature Detection Scheme . . . . 31

2.3.1 Low-complexity Windowed Multicycle Detector . . . . . . . 31

2.4 Detection Application for the SC-FDMA Uplink Signal Using the

Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusions of this chapter . . . . . . . . . . . . . . . . . . . . . . . 39

3 Dual-stage Detection Scheme for Ultra-Wideband Detect and Avoid 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Coexistence Model and the SC-FDMA Uplink System . . . . . . . . 42

3.2.1 Coexistence Model of UWB system and LTE-Advanced system 42

3.3 Proposed Dual-stage Detection Scheme with Threshold Factor and

Probability of indefinite detection . . . . . . . . . . . . . . . . . . . 43

3.3.1 Dual-stage Detection Scheme for SC-FDMA Uplink Signal . 43

3.3.2 Coarse Detection Stage with Energy Detection Scheme . . . 44

3.3.3 Refined Detection Stage with Low-complexity Cyclostation-

arity Feature Detection Scheme . . . . . . . . . . . . . . . . 46

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Conclusions of this chapter . . . . . . . . . . . . . . . . . . . . . . . 55

4 Spectrum Sensing Algorithms via Finite Random Matrices 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Asymptotic Random Matrices Eigenspectrum and SCN Models . . 61

4.2.1 Receive Samples Model . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Asymptotic Models for the Eigenspectrum Distribution . . . 62

4.2.2.1 Under H0 - The Marchenko-Pastur Model . . . . . 62

4.2.2.2 Under H1 - The Scaled and Extended Marchenko-

Pastur Models . . . . . . . . . . . . . . . . . . . . 63

ii



4.2.3 Asymptotic Extreme-value Models for the Eigenspectrum

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3.1 UnderH1 - The Scaled and Extended Tracy-Widom

Models . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4 Asymptotic Models for the Distribution of Standard Condi-

tion Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4.1 UnderH1 - The Scaled and Extended Tracy-Widom-

Curtiss Models . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Summary and Comments on Asymptotic-RMT Spectrum

Sensing Algorithms . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Finite Random Matrices EigenSpectrum and SCN Models . . . . . 73

4.3.1 Finite Models for SCN Distribution . . . . . . . . . . . . . . 73

4.3.1.1 Under H0 - Distribution of SCN of Finite Uncorre-

lated Central Wishart Matrices . . . . . . . . . . . 73

4.3.1.2 Under H1 - Scaled and Extended SCN Distributions 74

4.3.2 Summary and Comments on Finite-RMT Spectrum Sensing

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 CDF and PDF of Extreme Eigenvalues . . . . . . . . . . . . . . . . 80

4.4.1 Distributions of Largest Eigenvalues . . . . . . . . . . . . . . 81

4.4.2 Distributions of Smallest Eigenvalues . . . . . . . . . . . . . 84

4.4.3 Illustrative Results for Extreme Eigenvalue Distributions . . 86

4.4.4 Application to Spectrum Sensing . . . . . . . . . . . . . . . 87

4.5 Conclusions of this chapter . . . . . . . . . . . . . . . . . . . . . . . 96

5 Overall Conclusions 97

Acknowledgements 109

List of Achievements 110

Appendix: Asymptotic and Exact Random Matrix Theories 112

iii



List of Figures

1.1 Cognitive Radio framework. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Cognitive Radio system model. . . . . . . . . . . . . . . . . . . . . 8

1.3 SC-FDMA uplink system structure. . . . . . . . . . . . . . . . . . . 10

1.4 SC-FDMA signal distribution in frequency. . . . . . . . . . . . . . . 10

1.5 A coexistence model between UWB system and IMT-Advanced sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Binary hypothesis test sketch. . . . . . . . . . . . . . . . . . . . . . 13

1.7 Binary hypothesis test and PDFs. . . . . . . . . . . . . . . . . . . . 14

1.8 Binary hypothesis test and PDFs. . . . . . . . . . . . . . . . . . . . 15

1.9 Energy detection PDFs. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Cooperative signal detection model with N detectors. . . . . . . . . 20

1.11 Research motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.12 Research relation of non-cooperative detection. . . . . . . . . . . . . 23

1.13 Research relation of cooperative detection. . . . . . . . . . . . . . . 25

2.1 Coexistence model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 SC-FDMA signal distribution. . . . . . . . . . . . . . . . . . . . . . 30

2.3 Complexity comparison. The number in box indicates the multiples

of operation between two schemes. . . . . . . . . . . . . . . . . . . 35

2.4 P
D

vs. SNR(dB) on the multipath channel. . . . . . . . . . . . . . . 36

2.5 The ROC performance on the multipath channel. SNR=-5 dB. . . . 38

2.6 Detection performance of varied bandwidth systems on the multi-

path channel. The detection duration is 1 Slot (0.5 ms) and the

SNR is 0 dB. The number of occupied RBs and the total number of

RBs are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 SC-FDMA uplink system. . . . . . . . . . . . . . . . . . . . . . . . 42

iv



3.2 Test statistic of CD, the threshold factor ρ and the probability of

indefinite detection PID. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Complexity versus the ratio of the threshold factor to the threshold

ρ/γ, with PFA=0.01 and SNR=-5 dB, 0dB and 5 dB. . . . . . . . . 48

3.4 Relation between the probability of indefinite detection PID and the

ratio of threshold factor to threshold ρ/γ, for PFA=0.01 and SNR=-5

dB, 0 dB and 5 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 PDFs of DE under two hypotheses H0 and H1. . . . . . . . . . . . 50

3.6 Probability of Detection (PD) vs. SNR (dB) ( Indoor Office A chan-

nel, for PFA = 0.01 and PID= 0.2, 0.5, and 0.8, No. of occupied RBs

is 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Probability of Detection (PD) vs. SNR (dB) ( Indoor Office B chan-

nel, for PFA = 0.01 and PID= 0.2, 0.5, and 0.8, No. of occupied RBs

is 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 ROC performance (PD vs. PFA) in Indoor Office A channel and PID=

0.2, 0.5, and 0.8. The number of occupied RBs is 3 and SNR=0 dB. 53

3.9 ROC performance (PD vs. PFA) in Indoor Office B channel and PID=

0.2, 0.5, and 0.8. The number of occupied RBs is 3 and SNR=0 dB. 53

3.10 ROC performance (PD vs. PFA) for low PFA in Indoor Office A

channel and PID= 0.2, 0.5, and 0.8. The number of occupied RBs

is 3 and SNR=3 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Effect of data rate on probability of Detection (Indoor Office B

channel, for PFA = 0.01 and PID= 0.1.) . . . . . . . . . . . . . . . . 54

4.1 PD Versus SNR. Probability of detection of spectrum sensing algo-

rithms based on finite random matrix (proposed) and asymptotic

random matrix, as a function of the SNR and the tolerated proba-

bility of false-alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 PD Versus PF. Probability of detection of spectrum sensing algo-

rithms based on finite random matrix (proposed) and asymptotic

random matrix, as a function of the SNR and the tolerated proba-

bility of false-alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 PD Versus SNR. Probability of Acquisition of spectrum sensing al-

gorithms based on finite random matrix (proposed), as a function

of the SNR and the tolerated probability of false-alarm. . . . . . . . 71

v



4.4 PD Versus PF. Probability of Acquisition of spectrum sensing algo-

rithms based on finite random matrix (proposed), as a function of

the SNR and the tolerated probability of false-alarm. . . . . . . . . 72

4.5 Marchenko-Pastur PDF . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 PDF under H0. Probability density function of the SCN of uncor-

related and semi-correlated (θ1 = 1, θ2 = 0.6) central dual Wishart

random matrices and corresponding empirical distributions of cen-

tral and non-central dual Wishart random matrices. . . . . . . . . . 79

4.7 PDF under H1. Probability density function of the SCN of uncor-

related and semi-correlated (θ1 = 1, θ2 = 0.6) central dual Wishart

random matrices and corresponding empirical distributions of cen-

tral and non-central dual Wishart random matrices. . . . . . . . . . 80

4.8 Matthaiou PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Random Matrix Size . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 CDF. Distributions of extreme eigenvalues of finite Wishart matrices. 88

4.11 PDF. Distributions of extreme eigenvalues of finite Wishart matrices. 89

4.12 PD vs. SNR. Detection performances of spectrum sensing algorithms. 90

4.13 PD vs. PF. Detection performances of spectrum sensing algorithms. 91

4.14 TWC PD vs. SNR. Detection performances of spectrum sensing

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.15 TWC PD vs. PF. Detection performances of spectrum sensing al-

gorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vi



List of Tables

2.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Asymptotic Random Matrix Models for Spectrum Sensing . . . . . 69

4.2 Spectrum Sensing Algorithms from Random Matrix Theory . . . . 70

4.3 Finite Random Matrix Models for Spectrum Sensing . . . . . . . . 76

4.4 Spectrum Sensing Algorithms from Random Matrix Theory . . . . 87

4.5 Largest Eigenvalue Distributions . . . . . . . . . . . . . . . . . . . . 94

4.6 Smallest Eigenvalue Distributions . . . . . . . . . . . . . . . . . . . 95

vii



Abstract

The fixed spectrum regulation policy has been considered as the cause leading to

the conflict between the growing demands for spectrum and the inefficient fre-

quency utilization. The Cognitive Radio (CR), as an innovative communication

technology, can hopefully improve the utilization efficiency of wireless spectrum in

an intelligent and flexible way.

This dissertation investigates the signal detection schemes from two perspec-

tives, non-cooperative detection and cooperative detection, with the goal of solving

several problems in spectrum sensing that is the key issue in CR.

Chapter 1 introduces the background of CR and the motivation of the research.

In Chapter 2, the author proposes a low-complexity cyclostationarity feature

detection scheme for detect and avoid (DAA) of Ultra-Wideband (UWB) system

in order to solve the coexistence issues between UWB system and Long Term

Evolution-Advanced (LTE-Advanced) system which can be considered as a practi-

cal model of CR. The localized Single-carrier Frequency Division Multiple Access

(SC-FDMA) signal utilized in the uplink of LTE-Advanced system is utilized to

be detected.

In Chapter 3, a dual-stage detection scheme composed of coarse detection stage

and refined detection stage has been proposed. The threshold factor for the prob-

ability of indefinite detection is firstly proposed and defined to combine the two

stages. The proposed scheme focuses on the integration of two different detection

schemes with different complexities in order to reduce total computational com-

plexity. The computer simulation results show that the proposed scheme can make

a trade-off between the detection performance and the computational complexity

1



by setting the probability of indefinite detection.

In Chapter 4, the author discusses the cooperative signal detection problem from

a finite Random Matrix Theoretical (RMT) perspective. Specifically, the author

employs recently-derived closed-form and exact expressions for the distribution

of the Standard Condition Number (SCN) of uncorrelated and semi-correlated

random dual central Wishart matrices of finite sizes in the design Hypothesis-

Testing algorithms to detect the primary signal.

In particular, two algorithms are designed, with basis on the SCN distribution

in the absence and in the presence of primary signal, respectively. It is also shown

that the proposed finite RMT-based algorithms outperform all similar alternatives

currently known in the literature, at a substantially lower complexity. Several new

results on the distributions of eigenvalues and SCNs of random Wishart Matrices

are also offered.

Chapter 5 summarizes the results of each chapter and concludes this disserta-

tion.
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Chapter 1

General Introduction

In this chapter, Cognitive Radio (CR), being considered as an innovative commu-

nication technology to hopefully improve the utilization efficiency of wireless spec-

trum in an intelligent and flexible way, is described, followed by the introductions

of varied conventional signal detection schemes in CR. The system models are de-

scribed and a specific and practical coexistence model between Ultra-Wideband

(UWB) system and International Mobile Telecommunications-Advanced (IMT-

Advanced) system is also included to illustrate the non-cooperative signal detection

schemes. The motivation of the research and the relation of the associated research

are finally presented.

1.1 Cognitive Radio

1.1.1 Background

The fixed frequency assignment policy issued by the by national regulatory bodies

like the Federal Communications Commission (FCC) is said to bring the current

conflict between the scarcity of spectrum and the inefficient spectrum utilization.

There is a large portion of the assigned spectrum, which is sporadically utilized

[1, 2].

The growing demands for spectrum due to the rapid development of wireless

devices and applications have made the useful frequency to be very rare sources.

However, the fact of the current utilization of such rare resource is that the Primary

Users (PUs) who are assigned fixed frequency do not use efficiently the exclusive

spectrum and the Secondary Users (SUs) who have no spectrum licenses have no

3



Figure 1.1: Cognitive Radio framework.

rights to access such spectrum.

Based on the current spectrum utilization situation, a new technology named

Cognitive Radio [3], has been considered to improve the efficiency of the spectrum

usage.

1.1.2 Cognitive Radio Definition and Framework

Cognitive radio is defined as an intelligent wireless communication system that is

aware of its environment and uses the methodology of understanding-by-building

to learn from the environment and adapt to statistical variations in the input

stimuli, with two primary objectives in mind [4]:

• highly reliable communication whenever and wherever needed,

• efficient utilization of the radio spectrum.

The CR framework is shown in Fig. 1.1 [1, 4]. The main functions in CR are

the followings:

I. Spectrum Sensing: Real time monitoring the target spectrum bands, gather

their information, and decide the ”white” 1 spectrum band,

1The notation of ”white” means the target spectrum band is not occupied by the Primary Users and can be

utilized by the Secondary Users

4



II. Spectrum Analysis: Rapidly decide the characteristics of the gathered ”white”

spectrum,

III. Spectrum Decision: Determinate the transmission parameters according to

the spectrum characteristics and the user requeirements.

The primary and key function in CR is spectrum sensing, which is mainly

implemented by the detection of the PUs’ signal. Therefore, the so-called spectrum

sensing can be equivalently considered as the signal detection. In this thesis, the

notation of spectrum sensing will thereafter be replaced by the notation of signal

detection.

1.1.3 Current Developments of Cognitive Radio

With the rapid development of cognitive radio technology, there are some stan-

dard organizations or research forums such as IEEE DYSPAN Standards Com-

mittee (Formerly IEEE Standards Coordinating Committee 41) [5], IEEE 802.22

the Working Group on Wireless Regional Area Networks [6], and Software Defined

Radio (SDR) forum [7] to accelerate such developments.

IEEE DYSPAN Standards Committee, formerly IEEE Standards Coordinating

Committee 41 (SCC41), is seeking proposals for standards projects in the areas of

dynamic spectrum access, cognitive radio, interference management, coordination

of wireless systems, advanced spectrum management, and policy languages for next

generation radio systems [5].

The IEEE P1900 Standards Committee was founded in 2005 jointly by the IEEE

Communications Society (ComSoc) and the IEEE Electromagnetic Compatibility

(EMC) Society. It aims to develop supporting standards dealing with new tech-

nologies and techniques being developed for next generation radio and advanced

spectrum management. The work of the IEEE 1900.x Working Groups continues

under SCC41.

There are main 6 parts of IEEE 1900.x, from IEEE 1900.1 to IEEE 1900.6, in

which IEEE 1900.6 is working on Spectrum Sensing Interfaces and Data Structures

for Dynamic Spectrum Access and other Advanced Radio Communication Systems

[5].

IEEE 802.22 is a standard for Wireless Regional Area Network (WRAN) using

white spaces in the TV frequency spectrum [6]. The development of the IEEE

5



802.22 WRAN standard is aimed at using cognitive radio techniques to allow shar-

ing of geographically unused spectrum allocated to the Television Broadcast Ser-

vice, on a non-interfering basis, to bring broadband access to hard-to-reach, low

population density areas, typical of rural environments, and is therefore timely and

has the potential for a wide applicability worldwide. It is the first worldwide effort

to define a standardized air interface based on CR techniques for the opportunistic

use of TV television bands on a non-interfering basis [6].

IEEE 802.22 WRANs are designed to operate in the TV broadcast bands while

assuring that no harmful interference is caused to the incumbent operation, i.e.,

digital TV and analog TV broadcasting, and low power licensed devices such as

wireless microphones. This standard is supposed to work in the United States,

however, the feature remains under investigation as mandatory in other parts of

the world including Europe, Japan and China.

The SDR Forum, established in 1996, is now the Wireless Innovation Forum,

which is a non-profit mutual benefit corporation dedicated to driving technology

innovation in commercial, civil, and defense communications worldwide. Members

bring a broad base of experience in Software Defined Radio (SDR), Cognitive Radio

(CR) and Dynamic Spectrum Access (DSA) technologies in diverse markets and at

all levels of the wireless value chain to address emerging wireless communications

requirements [7].

The above mentioned standard committees or research organization have issued

plenty of standards or technique reports based on a mass of research papers to

stimulate the development of cognitive radio. Within such technique articles and

research papers, the spectrum sensing issues take a large portion since such issue

is the key point in cognitive radio.

The signal detection is the main tool to implement spectrum sensing function.

Therefore, this dissertation mainly discusses signal detection problems.

1.1.4 Detect and Avoid Mechanism

The coexistence model between the Ultra-Wideband system and the IMT-Advanced

system can be deemed as a practical cognitive radio prototype, in which the UWB

system works as the secondary user system and the IMT-Advanced system works

as the primary user system. The UWB system takes a ”Spectrum Underlay” way

to access the licenced spectrum [8] and a detect and avoid mechanism to peacefully

6



operate with the spectrum holder such as the IMT-Advanced system and avoid the

harmful interference [9, 10].

In DAA, there are two types of detection operations, initial detection and con-

tinuous detection [9]. The initial detection is used to sense the victim signal of the

target frequency band initially, and the continuous detection is utilized to monitor

regularly the target band. In the continuous detection operation, the signal level

of the victim system is sensed continuously [9].

There are some standard committees such as IEEE 802.19 Wireless Coexistence

Working Group (WG) [11] and the European Computer Manufacturers Association

(ECMA) [12] are working on the coexistence issues in the UWB system.

In order to avoid the harmful interference to the IMT-Advanced system, the

primary task of the UWB system is to detect the primary user signal. The

IMT-Advanced system, which will be implemented and occupy 3.4∼3.6GHz band

in the near future [9, 10, 13]. The 3rd Generation Partnership Project (3GPP)

LTE-Advanced system can fully reach or even surpass the requirements on IMT-

Advanced system within the ITU-R time plan [14, 15]. Therefore, the Long Term

Evolution-Advanced (LTE-Advanced) system is supposed to be the victim system

for the UWB system and the coexistence issues between these two systems should

be investigated.

The LTE-Advanced transmission included the downlink and the uplink should

be detected and protected by the UWB system with the DAA mechanism. In

3.4∼3.6GHz band, the LTE-Advanced system takes the Time Division Duplex

(TDD) mode for the downlink and the uplink [16]. In this case, detecting the

uplink is adequate since the downlink also uses the same band. On the other

hand, detecting the uplink is relatively easier than detecting the downlink since

the UWB device is closer to the User Equipment (UE) than to the Base Station

(BS) [17].

The Single-carrier Frequency Division Multiple Access (SC-FDMA) system has

been selected as the uplink of LTE-Advanced system. The 3GPP standards such

as [16,18–21] describe SC-FDMA uplink system from different views.

7



Figure 1.2: Cognitive Radio system model.

1.2 Signal Detection Schemes

1.2.1 System Models

Figure 1.2 indicates the CR system model, which includes the primary system,

the non-cooperative secondary system and the cooperative secondary system [5].

In the non-cooperative mode, SUs monitor the target frequency band assigned to

PUs and take communications using such spectrum. There are no secondary base

station and spectrum broker in this mode. SUs operating in the cooperative mode

receive the information of ”white” spectrum from the secondary base station. The

detectors fitted in SUs also detect PU signal and transfer individual detection

result to the secondary base station. The spectrum broker gathers and transfers

the information of the target frequency band.

The non-cooperative detection means that there is no cooperation between the

distributed detectors or there is not the fusion center to deal with detection infor-

mation from individual detector. The main detection schemes in non-cooperative

detection such as energy detection and cyclostationarity feature detection are dis-
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cussed.

In order to improve the detection performance, many researchers have proposed

cooperative detection scheme, in which a fusion center is used to gather detection

information from distributed detectors. Of course, the non-cooperative detection

method can also be used by the distributed detector in the cooperative detec-

tion system. However, the limitations of individual detection scheme still affect

detection performance of the cooperative detection scheme.

1.2.2 Non-cooperative Signal Detection Schemes

1.2.2.1 SC-FDMA Uplink System

SC-FDMA uplink system has been described in [20, 22]. Figure 1.3 presents the

structures of the UE transmitter and the Base Station (BS) receiver. The M input

symbols s[m](m = 0, ...,M − 1) are transformed into frequency domain S[l]

S[l] =
M−1∑
m=0

s[m] · exp(−j 2πml

M
), l = 0, ...,M − 1. (1.1)

Each of the DFT outputs S = [S[0], ..., S[M −1]]T is then mapped to one of the N

orthogonal subcarriers. The localized mapping way is supported by 3GPP [20,21].

The localized mapping way can be defined as

X[k] =

{
S[l], k = D +NSub ·∆(bl/NSubc) + l mod NSub

0, k = others,

where D is band margin and NSub is the number of the subcarriers per Resource

Block (RB). bαc indicates the largest interger that does not exceed α. ∆(bl/NSubc)
is a random integer, which belongs to [0, NRB− 1] and NRB is the total number of

RBs.

A RB distribution example of the localized SC-FDMA signal is shown in Fig.

1.4. The example is based on a practical SC-FDMA uplink system with 10 MHz

channel bandwidth (BW) [19,20]. In this figure, the number of subcarriers N , the

number of RBs ,NRB and the number of subcarriers in one RB, NSub are set to be

1024, 50 and 12, respectively. The margin D is (N −NRB ·NSub)/2 = 212. In time

domain, the transmission time unit is the time slot, which is 0.5 ms. 7 SC-FDMA

symbols make up one time slot. Note that the same slot structure is taken in the
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Figure 1.3: SC-FDMA uplink system structure.

Figure 1.4: SC-FDMA signal distribution in frequency.

FDD mode and the TDD mode [20]. It means that the distribution ways of RBs

in the FDD mode and the TDD mode are the same in a specific slot.

The output signal x[n] expressed in time domain is generated by N -point inverse

DFT (IDFT).

x[n] =
1

N

N−1∑
k=0

X[k] · exp(j
2πnk

N
), n= 0, 1,...,N− 1. (1.2)

The receiver does the inverse action of the transmitter to receive the transmitted

SC-FDMA signal tainted from a non-ideal channel.

SC-FDMA signal utilizes 180 KHz RB shown in Fig. 1.4, which contains 12

subcarriers with 15 KHz per subcarrier. Compared with the WiMAX signal, it is
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Figure 1.5: A coexistence model between UWB system and IMT-Advanced system.

more difficult for the detector in [17] to detect SC-FDMA signal especially when

high detection performance is required. Notice that such a detector can also reuse

some components of the UWB receiver.

Both energy detection (ED) and Cyclostationarity Feature Detection (CFD)

can be implemented with this detector structure. Note that ED is built in time

domain and located after A/D component without the DFT block while CFD is

in frequency domain.

1.2.2.2 Non-cooperative Signal Detection Model-A Practical Coexistence Model

The author will illustrate non-cooperative signal detection schemes in a practical

coexistence model between a UWB system and an IMT-Advanced system. The

UWB system can be regarded as a secondary system and the IMT-Advanced sys-

tem can be considered as a primary system. DAA is essential for the UWB system

to coexist with the IMT-Advanced system, which will be implemented and occupy

3.4∼3.6GHz band in the near future [9, 10, 13]. 3GPP LTE-Advanced system can

fully reach or even surpass the requirements on IMT-Advanced system within the

ITU-R time plan [14,15]. Therefore, the LTE-Advanced system is supposed to be

11



the victim system for the UWB system and the coexistence issues between these

two systems should be investigated.

The coexistence issues between the WiMAX system and the UWB system have

been discussed in [17]. The detection of the transmitted signal of the victim system

is prerequisite for DAA. Comparing with WiMAX signal detection, the minimum

bandwidth of the LTE-Advanced signal is narrower and more sophisticated detec-

tion scheme is required.

1.2.2.3 Binary Hypothesis Test

In order to detect the SC-FDMA uplink signal, a binary hypothesis test is given

as follows,

H0 : x[m] = w[m],

H1 : x[m] =
1

P

P−1∑
p=0

h[p]s[m− p] + w[m],
(1.3)

where P is the number of multipath, x[m] and s[m; p] are the m-th samples of

the received signal, the transmitted SC-FDMA signal affected by the p-th path

fading. Here, w[m] is assumed to be an i.i.d. variate such that w[m] ∼ NC(0, 1)

in which NC(0, 1) denotes the circularly symmetric complex standard normal dis-

tribution and the symbol ∼ indicates that the variate on the lefthand-side follow

the distribution on the righthand-side.

The hypothesis H1 indicates the presence of the target signal, whereas the

hypothesis H0 reveals that the target frequency band is available. The factor h

indicates the impulse response of the channel. For Additive White Gaussian Noise

(AWGN) channel, the parameter P is set to 1 and only h[0] is included, denoting

the linear time-invariant channel gain. Nevertheless, for multipath fading channel,

h[p] is a complex random variable denoting the channel fading on the p-th path.

JTC94 Indoor Office B channel is utilized to simulate the multipath Rayleigh

fading channel model in the coexistence model [23]. Suppose the AWGN w[m],

the transmitted signal x[m] and the parameter h[p] are independent of each other.

1.2.2.4 Hypothesis Test Logic and Detection Parameters

Before the discussion of specific detection schemes, the author should emphasize

the importance of cumulative distribution function (CDF) and its derivative prob-
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Figure 1.6: Binary hypothesis test sketch.

ability density function (PDF) in the researches of cognitive radio. The author also

should make some detection logics be clear and define some statistic parameters.

The signal detection schemes are based on binary hypothesis test simply indi-

cated in Fig. 1.6, in which there are two hypotheses in left circles denoted by H0

and H1 and two results in right squares.

In this figure H0 and H1 indicate that the absence and presence of the target

signal, respectively. PD is the probability of detection, denoting the probability

that the detector detects the target signal when the hypothesis is the presence of

such signal. On the contrary, PM means that the probability that the detector

misses the target signal. According to the similar story, PF is the probability

of false alarm and PA is the probability of acquisition which means the target

frequency band is not occupied by the primary users and can be accessed by the

secondary systems.

Figure 1.7 indicates the binary test decided by the threshold γ. Functions f1

and f0 denote the PDFs of the detector distributions under the conditions of the

presence and absence of the target signal, respectively. The threshold γ is decided
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Figure 1.7: Binary hypothesis test and PDFs.

by the required probability of false alarm PF , which is the small area left side of γ

under f0. It is not difficult to calculate PD when the PDFs of f0 and f1. However,

the calculation is not straightforward since the integral operations are required if

we want to get those detection results. Therefore the CDFs of the detector under

two hypotheses cases are required.

If the CDFs of the detector under two hypotheses are known, the calculations

become clear and easy. Figure 1.8 indicates this case. Function F1 denotes the CDF

of the detector when the target signal is present and and F0 denotes the CDF of

the detector when the target signal is absent, respectively. We can directly decide

the threshold γ and consequently other parameters.

Therefore the CDF and PDF are very important in the research of signal de-

tection. In this dissertation, the author focuses on the CDF and PDF of several

statistic schemes.

1.2.2.5 Energy Detection

An energy detector for N received signal y[n] in time domain is defined as

DE =
N−1∑
n=0

(|y[n]|)2. (1.4)
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Figure 1.8: Binary hypothesis test and PDFs.

According to the hypotheses test, the test statistic of DE follows a central χ2-

distribution with N degrees of freedom under the hypothesis of H0. When H1 is

valid, it follows a non-central χ2-distribution with the same degrees of freedom.

Based on the Central Limit Theorem (CLT), the test statistic of DE approximately

follows a Gaussian distribution when the number of the samples N is large enough

[24,25]. The test statistic can be approximately described as

H0 : DE ∼ CN (Nσ2
w, 2Nσ

4
w)

H1 : DE ∼ CN (N(η2σ2
x + σ2

w), 2N(η2σ2
x + σ2

w)2), (1.5)

where σ2
w and σ2

x are the variances of the AWGN and the victim signal, respectively.

σ2
x is also defined as

σ2
x = E[|x[n]|2], (1.6)

where E[·] indicates ensemble average. The channel gain η is defined as

η =
P−1∑
p=0

|h[p]|2. (1.7)

Figure 1.9 indicates the PDFs (p(DE;H0), p(DE;H1)) of the test statistic of

DE under two hypotheses. For a threshold γ, PD of Energy Detection is determined

15



Figure 1.9: Energy detection PDFs.

as

PD = Q

(
γ −N(η2σ2

x + σ2
w)√

2N(η2σ2
x + σ2

w)2

)
, (1.8)

where Q denotes the complementary cumulative distribution function. The prob-

ability of false alarm (PFA) is defined as

PF = Q

(
γ −Nσ2

w√
2Nσ4

w

)
. (1.9)

The ED is simple, but is sensitive to noise uncertainty and is incapable of

distinguishing the signal type [26]. On the other hand, it is hard to detect the

LTE-Advanced signal or WiMax signal for the energy detector if it occupies only

single sub-channel. [17] has indicated that the ED does not reach the required

detection performance for the detection of the single sub-channel signal. The

cyclostationarity feature detection can overcome those limitations and outperform

the energy detection especially in a non-ideal transmission environment, however,

it suffers from high computational complexity.

1.2.2.6 Cyclostationarity Feature Detection

The signal cyclostationarity feature is initially discussed and developed by [27–31].

Specially, [28] has illustrated a practical likelihood-ratio detection method with
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a BPSK signal based on the regenerated “spectral-line”, which is inherently the

cyclic-spectrum. [29] developed a statistical χ2 test for the presence of the cyclo-

stationarity feature based on the cyclic-covariances and the cyclic-spectrums. The

above references share the same assumption that the cyclic-spectrums are known.

However, if the type of PU signal is unclear or the cyclic-spectrums are hard to es-

timate, the decision of the cyclic-spectrums requires a large number of calculations

since the whole occupied spectrums need to be checked. [32] presented so-called

“the variability method” for the estimation of cyclo-periods of the cyclostationary

signal.

Theorem 1 (Optimum Multicycle Detector (Likelihood-ratio Detector)).

Let D
S
[λ] denote the optimum spectrum-line regeneration detector, with the cyclic-

spectrum λ.

Then

D
S
[λ] ,

∑
k

1

N2
w

P ∗s [k, λ] · Px[k, λ], (1.10)

where k denotes the frequency and Nw is the noise power averaged in the frequency

domain, which can be omitted due to its unitary, and ∗ denotes the complex con-

jugate.

Ps[k, λ] is the ideal cyclic periodogram of PU signal s[m], and the “IDEAL”

indicates that the set of the cyclic-spectrums of s[m] is assumed to known. Px[k, λ]

is the cyclic periodogram of received signal x[m], which is defined as,

Px[k, λ] ,
1

M
X

T
[k] ·X∗

T
[k + λ], (1.11)

where T = MTs is the signal segment length and Ts is the period. XT [k] is the

complex envelope of x[m] with the center frequency k and bandwidth on the order

of 1
T

,

X
T
[k] ,

M−1∑
m=0

x[m]e
−
j2πmk

M . (1.12)

Hence, the optimum multicycle detector DM can be built on the optimum spectrum-

line regeneration detector (1.10),

D
M

,
∑
λ

D
S
[λ]. (1.13)

Proof : [28, Eq.31, Eq.47] provided the definitions of the optimum spectrum-line re-

generation detector and the optimum multicycle detector, respectively. The cyclic
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periodogram was also given in [28, Eq.27]. Note that, this thesis takes discrete

variables instead of continuous ones and omits the time notation t for simplicity.

In Theorem 1, there is a assumption that the ideal cyclic periodogram Ps[k, λ]

of PU signal is known or it is easily estimated. However, if the particular PU signal

type is not known sufficiently well to decide the ideal cyclic periodogram Ps[k, λ]

utilized in Eq.(1.10) as a weighing function, Ps[k, λ] can be replaced with a simple

rectangular window [28].

1.2.3 Cooperative Signal Detection Schemes

1.2.3.1 Cooperative Signal Detection Schemes

The overall detection performance of the non-cooperative detection schemes are

affected by noise uncertainty, low SNR and nonideal channel effects such as shad-

owing and fading. In order to overcome such limitations and improve detection

performance, the cooperative detection schemes have currently been paid more

attention in plenty of papers [33–36] and standards [37].

There are plenty of challenges on cooperative detection technology such as the

selection of optimal distributed detectors [38], the combination of the gathered

detection information [35] and the decision the detection result [39], and so on.

The conventional non-cooperative detection schemes such as energy detection,

cyclostationarity feature detection are usually utilized by the distributed detectors.

Among the above mentioned non-cooperative detections, the energy detection is a

basic choice since its advantages such as simplicity, no requirement of the target

signal information.

The choice of cooperative detection scheme depends on the following factors,

• The practical condition whether there is a fusion center can be used,

• There are multiple detectors can be used,

• The system requires high detection performance.

The detection results from distributed detectors are gathered and combined in

the fusion center by varied ways, such as soft combination [40] or hard combination

[35]. The total detection result is then decided in the fusion center.

However, the distributed detector using energy detection way still suffers from

the noise uncertainty, and nonideal channel effects such as fading and shadowing.
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In order to overcome such limitations, [36,41–43] utilize the random matrix theory

to build the cooperative detection system. The asymptotic eigenvalues and stan-

dard condition number of Wishart random matrices summarized in Appendix A

has been utilized. Simulation results on detecting digital TV signals has shown

that these methods based on statistical random matrix theories are more robust to

noise uncertainty while requiring no a priori information of the signal, the channel,

and noise power [41].

Based on such researches, The author firstly construct cooperative detection

schemes using exact and finite random matrix theories. The author uses the stan-

dard condition numbers and the extreme eigenvalues of Wishart matrix to build

the cooperative detection system. Simulation results in Chapter 4 indicate that the

superior detection performance can be achieved under a finite number of samples,

comparing the asymptotic cases.

1.2.3.2 Cooperative Signal Detection Model

Consider the standard AWGN model for an i-th sample of the baseband received

signal

hi =
√
β · si + ni (1.14)

where β is the SNR, si is the PU signal including the effect of the channel, ni

are i.i.d. variates such that ni ∼ NC(0, 1) in which NC(0, 1) denotes the circularly

symmetric complex standard normal distribution and the symbol ∼ indicates that

the variates on the lefthand-side follow the distribution on the righthand-side.

Figure 1.10 indicate the cooperative detection model, in which N detectors

gathering K samples of the primary signal cooperatively detect the presence of the

“white” spectrum.

Next, consider the Wishart matrix W , H · H†, where † denotes transpose-

conjugate (Hermitian).

In the following subsections, the author summarizes several models for the eigen-

spectrum and Standard Condtion Number (SCN) of W with H.

Finally, without loss of generality2, all discussions hereafter are for the case

K 6 N such that W is full-rank.
2This avoids the unnecessary notational care to handle null eigenvalues.
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Figure 1.10: Cooperative signal detection model with N detectors.

1.2.3.3 Hypothesis Test in Cooperative Signal Detection

The binary hypothesis test including H0 and H1 cases is still utilized in the coop-

erative detection models. The detection process is shown as follows.

For the H0 case, the finite-RMT spectrum sensing algorithm can be concisely

described as follows. Given a prescribed α and 2×N samples hkn:

1−Construct H , [hkn]k={1,2}×n={1,···N};

2−Compute the eigenvalues (λ1, λ2) of W , H ·H†;

3−Evaluate the ratio ξ2 , λ2/λ1;

4−Accept H0 if and only if ξ2 6 P
(0)
M

−1
(1− α).

Likewise, for the H1 case, given a prescribed δ and 2 × N samples hkn the H1

test can be summarized as

1−Construct H , [hkn]k={1,2}×n={1,···N};

2−Compute the eigenvalues (λ1, λ2) of W , H ·H†;

3−Evaluate the ratio ξ2 , λ2/λ1;
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4−AcceptH1 if and only if ξ2 > P
(x)
M

−1
(δ), where x = s if the PU signal is random,

or x = e if the PU signal is constant3.

1.3 Motivation and Relations of This Research

1.3.1 Research Motivation

The signal detection issues are the key points of cognitive radio. This dissertation

discusses the signal detection problem from two aspects, non-cooperative signal

detection and cooperative detection.

In non-cooperative detection schemes, energy detection and cyclostationarity

feature detection are two main detection schemes, each of which possesses limita-

tions and advantages. Energy detection scheme is simple and does not require prior

information of the target signal, however, it suffers from noise uncertainty and can

not distinguish signal type [17] . Cyclostationarity feature detection is robust to

noise uncertainty and able to distinguish the signal type. However, the operation

of deciding the cyclic frequency makes cyclostationarity feature detection to be

very computational complexity [27,32].

In order to conquer the main limitations of energy detection and cyclostation-

arity feature detection, The author proposed a low-complexity cyclostationarity

feature detection scheme [44]. This scheme can get better detection performance

compared with energy detection with low computational complexity.

Based on the proposed low-complexity cyclostationarity feature detection scheme,

the author furthermore propose a dual-stage detection scheme, combining the

coarse detection stage and the refined detection scheme [45]. The energy detec-

tion and the low-complexity cyclostationarity feature detection work as the coarse

detection stage and the refined detection stage, respectively.

The author firstly proposed the threshold factor and the probability of indefinite

detection to combine such detection stages. The theoretical analysis and the com-

puter simulations indicate that the proposed scheme can make a tradeoff between

the computational complexity and the detection performance.

For cooperative detection schemes, the conventional non-cooperative detections

schemes such as energy detection, cyclostationarity feature detection are usually

3Notice that in the absence of any knowledge on the PU signal, the assumption of a random signal leads to

conservative detection.

21



Figure 1.11: Research motivation.

utilized by the distributed detectors. The energy detection is a basic choice since

its advantages such as simplicity, no requirements of the target signal information.

The limitation of individual distributed energy detector reduces the whole de-

tection performance of the cooperative system. In order to overcome such limita-

tions, the asymptotic random matrix theories are utilized to build the cooperative

detection system [36,41–43].

Simulation results indicate that the cooperative detection schemes based on

asymptotic random matrix theories are more robust to noise uncertainty and can

achieve better detection performance [36,41].

However, the above cooperative detection schemes based on asymptotic random

matrix theories require large number of received signal samples (more than 1000

[36]) to achieve the required detection performance.

In order to reduce the required number of samples and improve the detection
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Figure 1.12: Research relation of non-cooperative detection.

performance, the author firstly construct cooperative detection schemes using ex-

act and finite random matrix theories. The author uses the standard condition

numbers and the extreme eigenvalues of Wishart matrix to build the cooperative

detection system. Simulation results in Chapter 4 indicate that the superior de-

tection performance can be achieved under a finite number of samples (less than

100 samples, Chapter 4), comparing the asymptotic cases.

The achievements of the research and the relations of the research are shown in

Fig. 1.11, in which the low-complexity cyclostationarity feature scheme, dual-stage

detection scheme and exact finite random theory scheme are given in Chapter 2,

Chapter 3 and Chapter 4, respectively.

1.3.2 Research Relations of Non-cooperative Detection Schemes

The research relations of non-cooperative detection schemes are shown in Fig.

1.12, in which the relations between the conventional schemes and the proposed

detection schemes are denoted.

The coexistence model between the UWB system and the IMT-Advanced sys-
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tem can be regarded as a practical model of cognitive radio, in which the IMT-

Advanced system works as the primary user system and the UWB system is the

secondary user system. The detect and avoid mechanism operating in the UWB

system is the key technique to keep such two systems working smoothly [9, 10].

The energy detection and the cyclostationarity feature detection are two im-

portant detection schemes in DAA mechanism. They both hold advantages and

limitations.

The energy detection is simple, but is sensitive to noise uncertainty and is inca-

pable of distinguishing the signal type [26]. On the other hand, it is hard to detect

the LTE-Advanced signal or WiMax signal for the energy detector if it occupies

only single sub-channel. [17] has indicated that the energy detection does not reach

the required detection performance for the detection of the single sub-channel sig-

nal. The cyclostationarity feature detection can overcome those limitations and

outperform the energy detection especially in a non-ideal transmission environ-

ment, however, it suffers from high computational complexity.

Detection of the SC-FDMA uplink signal is an easy way to decide the presence

of the IMT-Advanced system signal. SC-FDMA uplink system has been described

in [20,22].

The author proposes to reduce the computational complexity of the conven-

tional cyclostationarity feature detection scheme using the window function in

the frequency domain, basing on the characteristics of the frequency distributions

of SC-FDMA uplink system. The frequency distribution of SC-FDMA is given

in [19,20].

In order to utilize the advantages and avoid the limitations of both detection

schemes, the author proposed the dual-stage detection scheme. This detector is

robust and can make a tradeoff between the detection performance and the com-

putational complexity by setting different the threshold factor and the probability

of indefinite detection, which parameters are firstly proposed by authors (to the

best of our knowledge).

1.3.3 Research Relations of Cooperative Detection Schemes

In this dissertation, the author have discussed the cooperative detection schemes

using random matrix theory. The research relations are shown in Fig. 1.13.
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Figure 1.13: Research relation of cooperative detection.

The author firstly include exact finite random matrix theory to solve the signal

detection problems, comparing with counterpart asymptotic random matrix theory.

The Marchenko-Pastur law [46,47], the Tracy-Widom law [48,49] and the Tracy-

Widom-Curtiss law [48, 50] have been utilized to solve signal detection problems

[36, 41, 42]. The exact finite standard condition number distribution has been

proposed in [51] and the exact finite extreme eigenvalue distribution has been

discussed in [52].

The theoretical analysis and computer simulation results have indicated that the

proposed detection schemes can get the better performance and use less number

of received signal samples.
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1.3.4 Research Relations of Chapters

The research relations in non-cooperative detection schemes and cooperative detec-

tion schemes have been presented in Section 1.3.2 and Section 1.3.3, respectively.

The proposed schemes including non-cooperative schemes and cooperative schemes

will be discussed in the following chapters as indicated respectively in Fig. 1.12

and Fig. 1.13.

The relations between the following chapters will be given here.

In Chapter 2, a low-complexity cyclostationarity feature detection scheme for

detect and avoid of the UWB system in order to solve the coexistence issues be-

tween UWB system and the LIMT-Advanced system is discussed.

Chapter 3 discusses a dual-stage detection scheme composed of coarse detection

stage and refined detection stage for the continuous detection operation of Ultra-

Wideband DAA.

Both Chapter 2 and Chapter 3 discuss the non-cooperative detection schemes.

The dual-stage detection scheme in Chapter 3 combines the low-complexity cy-

clostationarity feature detection scheme proposed in Chcpter 2 and the energy

detection.

The cooperative detections scheme using Random Matrix Theory is presented

in Chapter 4. Specifically, I employ recently-derived closed-form and exact expres-

sions for the distribution of the standard condition number (SCN) of uncorrelated

and semi-correlated random dual central Wishart matrices of finite sizes in the

design Hypothesis-Testing algorithms to detect the presence of PU signals.

In this Chapter, several new results on the distributions of eigenvalues and SCNs

of random Wishart Matrices are offered.

The thesis is concluded in Chapter 5.
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Chapter 2

Low-complexity Cyclostationarity

Feature Detection Scheme

2.1 Introduction

DAA mechanisms are essential for UWB system to coexist with the existing sys-

tems operating in the frequencies below 5GHz [9,13]. The frequency band 3.4∼3.6GHz

has been identified to IMT-Advanced systems at International Telecommunication

Union (ITU) World Radiocommunication Conference 2007 (WRC-07). Within

such spectrum, the coexistence issues between UWB systems and Worldwide Inter-

operability for Microwave Access systems (WiMAX) or Universal Mobile Telecom-

munication Systems (UMTS) have been discussed in [17, 53], respectively. Differ-

ent from [53] which has tried to deal with the coexistence issues by analyzing the

UWB interference on the victim systems, this chapter focuses on the detection

function of the DAA mechanism. The coexistence issues between UWB systems

and IMT-Advanced systems should be considered since IMT-Advanced systems

will be implemented in the near future. On the other hand, from the view of CR

perspective, the IMT-Advanced system and UWB system can also be considered

as the PU system and the SU system, respectively.

The SC-FDMA has been adopted as the uplink system by the 3GPP LTE-

Advanced systems, which can fully reach or even surpass the requirements on

IMT-Advanced systems within the ITU-R time plan [15,20]. In 3.4∼3.6GHz band,

only the TDD mode is recommended for downlink and uplink in the specification

of LTE-Advanced [20]. Therefore, the detection of the uplink signal is adequate
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since the downlink also utilizes the same band.

The coherent detection, the energy detection and the cyclostationarity feature

detection are three typical detection techniques [17]. The energy detection is sim-

ple, but is sensitive to noise uncertainty and is incapable of distinguishing the

signal type [26]. On the other hand, it is hard to detect the LTE-Advanced signal

or WiMax signal for the energy detector if it occupies only single sub-channel. [17]

has indicated that the energy detection does not reach the required detection per-

formance for the detection of the single sub-channel signal. The cyclostationarity

feature detection can overcome those limitations and outperform the energy de-

tection especially in a non-ideal transmission environment but suffers from high

computational complexity.

The signal cyclostationarity feature is initially discussed and developed by

[27–31]. Specially, [28] has illustrated a practical likelihood-ratio detection method

with a BPSK signal based on the regenerated “spectral-line”, which is inherently

the cyclic-spectrum. [29] developed a statistical χ2 test for the presence of the cy-

clostationarity feature based on the cyclic-covariances and the cyclic-spectrums.

The above references share the same assumption that the cyclic-spectrums are

known. However, if the type of PU signal is unclear or the cyclic-spectrums are

hard to estimate, the decision of the cyclic-spectrums requires a large number of

calculations due to the whole occupied spectrums need to be checked. [32] pre-

sented so-called “the variability method” for the estimation of cyclo-periods of the

cyclostationary signal.

A low-complexity cyclostationarity feature detection scheme for DAA of UWB

system in order to solve the coexistence issues between UWB system and LTE-

Advanced system which can be considered as a practical model of CR. The localized

Single-carrier Frequency Division Multiple Access signal utilized in the uplink of

LTE-Advanced system is utilized to be detected.

The remainder of the chapter is organized as follows. Subsection 2.2 firstly

presents a coexistence model of UWB systems and IMT-Advanced systems, fol-

lowed by an introduction of the SC-FDMA uplink system. In Subsection 2.3, the

low-complexity cyclostatioarity feature detection scheme is presented. A detection

application on the SC-FDMA signal utilizing the proposed scheme is illustrated in

Subsection 2.4. The simulation results are shown in Subsection 2.5 and the chapter

is concluded in Subsection 2.6.
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Figure 2.1: Coexistence model.

2.2 Coexistence Model and the SC-FDMA Uplink system

2.2.1 Coexistence Model of UWB Systems and IMT-Advanced System

A coexistence model of UWB system and IMT-Advanced system is indicated in

Fig.2.1, in which the IMT-Advanced system works as the victim system. The

coexistence model is similar to the Zone Model proposed in [9]. The detection

radius R of the detector should be larger than the UWB transmission distance D.

Different from the reference model, the detector instead of the victim system is

located in the zone center and the victim terminal located in the detection area

will be detected.

The DAA mechanism is performed by UWB system to avoid the harmful inter-

ference on [9] the victim system. In DAA, the transmission of the LTE-Advanced

system including downlink and uplink should be detected and protected by UWB

system. For 3.4∼3.6GHz band, LTE-Advanced system takes the TDD mode for

the downlink and the uplink [16]. In this case, the detection of the uplink is

adequate since the downlink also uses the same band. On the other hand, the

detection of the uplink is relatively easier than that of the downlink due to the

UWB device is closer to the UE than to the Base Station (BS) [17]. Therefore,
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Figure 2.2: SC-FDMA signal distribution.

only SC-FDMA uplink system operating in the TDD mode is considered in this

chapter.

2.2.2 A Description of SC-FDMA Uplink System

The theoretical description of the SC-FDMA signal is originally described in [54].

The practical implementation of the SC-FDMA uplink system is presented in [20,

22]. The input symbols v(u)[n](n = 0, ..., N − 1) of the UE u are grouped into

blocks containing N symbols and transformed into the frequency domain V (u)[l]

through

V (u)[l] =
N−1∑
n=0

v(u)[n]e−j
2π
N
nl, l = 0, ..., N − 1, (2.1)

where u = 0, ...U − 1 is the UE index and U is the total UE number. Each of

DFT output V(u) is then mapped to one of the M orthogonal subcarriers, where

M > NU . There are two main subcarrier mapping ways, distributed mapping

(or interleaved mapping) and localized mapping [22]. In order to achieve high

terminal throughput and low system complexity, the localized mapping scheme is

only supported in 3GPP [20].

Here S(u) is utilized to indicate the mapped symbol vector in the frequency
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domain,

S(u)[k] =

{
V (u)[l], k = uN + l

0, k = others
(2.2)

where the indices k = 0, ...M − 1, u = 0, ...U − 1 and l = 0, ..., N − 1. [20, 21]

provide the details about the mapping and frequency-hopping mechanisms.

The output signal s(u)[m] expressed in the time domain is generated by M -point

inverse DFT (IDFT),

s(u)[m] =
1

M

M−1∑
k=0

S(u)[k]ej
2π
M
mk,m= 0, 1,...,M− 1. (2.3)

The receiver does the inverse action compared to the transmitter to receive the

transmitted SC-FDMA signal tainted from the non-ideal channel.

Figure 2.2 presents an example of the SC-FDMA signal distribution way. This

example is based on a practical SC-FDMA uplink system with 1.4 MHz channel

bandwidth (BW) [20]. The duration of the time slot including 7 SC-FDMA sym-

bols and associated cyclic prefixes (CPs) is 0.5ms. Two slots construct one sub-

frame, which is defined as a transmission time interval (TTI). In the frequency

domain, SC-FDMA signal occupies 6 resource blocks (RBs) (N
RB

= 6), each con-

taining 12 continuous subcarriers (N
sub

= 12). The subcarrier spacing is 15 KHz

(F
sub

= 15KHz). During a slot, one UE may occupy one or more RBs according

to its data rate requirements. The same RB may be taken by the other UEs in

different slot.

2.3 Low-complexity Cyclostationarity Feature Detection Scheme

2.3.1 Low-complexity Windowed Multicycle Detector

In order to reduce the system complexity and conquer the limitations of the op-

timum multicycle detection scheme given in Theorem 1, the windowed multicycle

detection scheme is given as follows.

Lemma 1 (Windowed Multicycle Detector).

Let D(w)
M

denote the windowed multicycle detector,

D(w)
M

=
∑
λ

∑
k

Px[k, λ] ·W [k], (2.4)
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where W [k] denote a rectangular window with width ∆f = V Fs, in which Fs = 1
MTs

is the frequency sampling increment. If the data segment is T = (M − 1)Ts, the

resolution product is T ·∆f = V (M−1)
M

∼= V .

Proof : [28, Eq.32] and the related discussions in [28] presented the proof, but using

continuous variables.

Note that, Lemma 1 assumes that the cyclic-spectrum is known and Theorem

1 obtains the cyclic-spectrum using the ideal cyclic periodogram Ps[k, λ]. How-

ever, if the cyclic-spectrums or Ps[k, λ] is not known well enough to be included in

the detection processing, the extra estimation of the cyclic-spectrums is required.

Usually, the estimation processing requires the large number of calculations since

the whole spectrums occupied by PU signal need to be checked. [32] presented the

estimation of cyclic period, then the estimation of cyclic-spectrum is straightfor-

ward.

In order to avoid the estimation of cyclic-spectrums and reduce the computa-

tional complexity, we can utilize all possible cyclic-spectrums located in one window

function interval by adjusting the window width V and the central frequency k.

According to such idea, the low-complexity windowed multicycle detector is

straightforward by rewriting Eq.(2.4),

D(w)
ML

=
∑
λ∈Λ

∑
k

Px[k, λ] ·W [k], (2.5)

where Λ denotes all the possible cyclic-spectrums located in the window W [k].

This operation inherently alters the estimation interval of cyclic-spectrums from

the whole occupied spectrum by PU signal to a window width. Note that, the

problem of cycle leakage [27] 1 can also be conquered by adjusting the window

width. Finally, the tradeoff of the detection performance and the computational

complexity can be achieved.

The proposed low-complexity windowed multicycle detection scheme can be

directly applied to the detection of SC-FDMA system and the window function

is decided by the distribution of SC-FDMA signal in the frequency domain. The

coming section will illustrate the application with the practical SC-FDMA uplink

system.

1Some of the cyclic frequencies are not included in the detection.
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The detection rule can be defined as follows,

D(w)
ML

H1

>

<
H0

γ, (2.6)

where γ denotes the detection threshold.

The detection performance is statistically measured by the probability of detec-

tion P
D

= Pr{D(w)
ML

> γ|H1} and the probability of false alarm P
F

= Pr{D(w)
ML

>

γ|H0} denoted by α. Pr{} indicates the probability distribution. Therefore, the

threshold can be decided ahead and saved as a lookup table for varied α under the

condition H0 that there is no PU signal, γ = P−1
F

(1− α).

2.4 Detection Application for the SC-FDMA Uplink Signal

Using the Proposed Scheme

The SC-FDMA symbols of a specific UE u occupy one or more RBs. Such distri-

bution is shown in Fig.2.2 and indicated in Eq.(2.2). Based on the distribution of

SC-FDMA signal, the window W [k] in Eq.(2.5) can be designed to cover each of

all distributed RBs and the window width should be same with the length of RB.

For example, for a practical 1.4MHz SC-FDMA uplink system with 12 subcar-

riers (N
sub

= 12) per RB and 15 KHz per subcarrier (F
sub

= 15KHz), the width

∆f of window function can be set to Φ×12×15 = Φ×180 KHz and the frequency

resolution is the same as the sbucarrier spacing 15 KHz. For 1.4MHz SC-FDMA

uplink system, Φ can be set to be one of {1 2 ... 6} since the total number of

RBs is 6. For the reduction of the computational complexity, Φ is thereafter set

to be 1, indicating only one RB is orderly covered.

During a detection interval in the frequency domain decided by the window

width, the set of the cyclic-spectrums Λ composed of all possible cyclic-spectrums

is Λ = {F
sub

2F
sub

... (N
sub
− 1)F

sub
}.

During a detection interval in the frequency domain decided by the window

width, the set of the cyclic-spectrums Λ composed of all possible cyclic-spectrums

is Λ = {F
sub

2F
sub

... (N
sub
− 1)F

sub
}.

During the detection operation in one slot, the detector checks each of total 6

RBs one by one and obtains 6 distributed results. The detection result generated

from the n-th RB can be denoted by D(wn)
ML

, in which the n-th widow width is
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decided by the corresponding RB. Finally, in each slot, the detector chooses the

maximum result from the total 6 results as the last detection value. Then, the

detection result is generated by comparing with the given threshold γ.

The widowed multicycle detector for the 1.4MHz SC-FDMA signal can be sum-

marized as,

D(w)
ML

= max
n

∣∣D(wn)
ML

∣∣ , (2.7)

where the symbol || indicates that the amplitude is taken.

Table 2.1: Complexity Analysis

Channel Bandwidth (MHz) 1.4 3 5 10 15 20

Sampling frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

FFT Size NFFT 128 256 512 1024 1536 2048

Number of RB NRB 6 15 25 50 75 100

Number of Cyclic prefix 10 20 40 80 120 160

for symbol 1 NCP1

Number of Cyclic prefix 9 18 36 72 108 144

for symbol 2-7 NCP2

Subcarrier spacing (KHz) 15

Number of Subcarrier per RB Nsub 12

Number of Symbol per Slot Nsymb 7

Slot duration (ms) 0.5

Detection duration Nslot 1 Slot

Number of Multiplication 960 1920 3840 7680 11520 15360

for Energy detection NE
1∗

Number of Correlation 9044 21266 43806 94780 148621 203896

for Proposed Scheme detection NS
2∗

Number of Correlation 63168 242816 947968 3738112 8366131 14830592

for Conventional Scheme NC
3∗

(1∗)NE ((NFFT +NCP1) + (NFFT +NCP2) · (Nsymb − 1)) ·Nslot

(2∗)NS (Including NFFT log2(NFFT)) (C2
Nsub

·NRB +NFFT log2(NFFT)) ·Nsymb ·Nslot

(3∗)NC (Including NFFT log2(NFFT)) (C2
NFFT

+NFFT log2(NFFT)) ·Nsymb ·Nslot

The computational complexity analysis of the proposed detection scheme is
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Figure 2.3: Complexity comparison. The number in box indicates the multiples of operation

between two schemes.

shown in Table 2.1. The PU signal is the SC-FMDA uplink signal with varied

bandwidths from 1.4-20MHz [20]. The complexities of the proposed scheme and

that of the conventional scheme are measured by the number of correlation opera-

tion in the frequency domain, and that of the energy detection is indicated by the

number of the multiplication operation in the time domain. Note that, so-called

conventional scheme takes Eq.(2.4) as the detector and all possible cyclic-spectrums

are generated from the whole occupied spectrum. The complexities of the correla-

tion operation and that of the multiplication operation are almost the same. Figure

2.3 presents the complexities of three schemes. The complexity of the proposed

scheme is almost one seventh of that of the conventional scheme, and almost nine

times of that of the energy detection scheme for the 1.4 MHz channel bandwidth

system. However, the complexity difference between the proposed scheme and the

conventional scheme increases quickly and that difference between the proposed

scheme and the energy detection is almost stable. The complexity of the conven-

tional scheme is almost 73 times of that of the proposed scheme when the channel

bandwidth is 20MHz. It should be clarified that the computational complexity of
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Figure 2.4: PD vs. SNR(dB) on the multipath channel.

the FFT component (O(NFFT log2(NFFT ))) is included in the complexity analysis

of the proposed scheme and that of the conventional scheme (see Table 2.1). How-

ever, the computational complexity of the FFT block is not counted in the number

of multiplication of the energy detector that works in the time domain.

2.5 Simulation Results

In this section, the performance of the proposed detection scheme is evaluated

through the computer simulations. The 1.4MHz SC-FDMA uplink system is in-

cluded [20] and the simulation parameters are shown in Table 2.2.

PD is the abbreviation of the proposed detector illustrated by (2.5). CD and

ED are the abbreviations of the conventional cyclostationarity feature detector

(2.4) and the energy detection, respectively. Although the authors understand that

the energy detector is inherently simple and works worse in a non-ideal transmis-

sion environment, it is still included as the benchmark to evaluate the detection

performance and the computational complexity of the proposed scheme.

Figure 2.4 presents the detection performances of the PD, the CD and the ED

in the multipath environment with the constraint condition P
F

= α = 0.01. The

JTC 94 Indoor Office B channel model [23] is utilized to simulate the multipath

environment. Both the number of the active UEs and the occupied RBs are sup-
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Table 2.2: Simulation Parameters
Carrier frequency (GHz) 3.5

Channel Bandwidth (MHz) 1.4

Sampling frequency (MHz) 1.92

Subcarrier spacing Fsub(KHz) 15

Number of active UE 1

Number of RB NRB 6

Number of occupied RB NO 1

FFT Size NFFT 128

Number of Subcarrier per RB Nsub 12

Slot duration (ms) 0.5

Number of Symbol per Slot Nsymb 7

NCP1 (Table 2.1) 10

NCP2 (Table 2.1) 9

Frame Structure Type I TDD

Subframe duration (ms) 1

Modulation type QPSK

SC-FDMA

SNR (dB) -8 ∼ 8

Detection duration 1 Slot (0.5 ms)

2 Slots (1 ms)

3 Slots (1.5 ms)

Channel model Rayleigh

Indoor Office B [23]

Number of simulation trials 5000

posed to be 1. The window length Φ is also set to be one in all simulations. That

is, only one UE which occupies one RB is supposed to be active. The detection

durations are 2 slots (1ms) and 3 slots (1.5ms), respectively. It is found that the

proposed scheme based on windowed multicycle detector outperforms the energy

detector and works worse than the conventional scheme, exhibiting a 2 dB advan-

tage over ED at – the “high” SNR region around 0 dB – and several dB at the low

SNR region. It can be seen that the detection performance of ED is not good at

the low SNR region.

In order to illustrate the detection performance of the proposed scheme under

varied α, the Receiver Operating Characteristic (ROC) performance for an SNR of

−5 dB on the multipath channel is also presented. It is obvious that the proposed
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Figure 2.6: Detection performance of varied bandwidth systems on the multipath channel. The

detection duration is 1 Slot (0.5 ms) and the SNR is 0 dB. The number of occupied RBs and the

total number of RBs are shown.

scheme outperforms ED at all α region.

The detection performances for the SC-FDMA uplink signal with 1.4MHz chan-

nel bandwidth have been illustrated in Fig.2.4-2.5. For the SC-FDMA uplink signal

with varied bandwidth, the detection performances of the PD, the CD and the ED
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are shown in Fig.2.6. The simulation parameters of varied bandwidth systems

(1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz) are taken from Table 2.1 and

Table 2.2. The number of the active UE is UE=1, and the constraint condition is

α= 0.01, and the multipath channel (SNR=−5 dB) is still chosen. The number

of occupied RBs (UE data rate) for each system is given in the figure. Almost

the same ratio between occupied RBs and total RBs is selected for different band-

width systems. Considering the complexity analysis Table 2.1 and Fig.2.3, the

proposed scheme makes a tradeoff between the detection performance and the

computational complexity. Compared with the conventional cyclostationarity de-

tection, the proposed scheme can keep almost similar detection performance with

low computational complexity especially for the high bandwidth system.

2.6 Conclusions of this chapter

A low-complexity cyclostationarity feature detection scheme has been discussed

in this chapter. The inherent frequency distribution of the target signal is uti-

lized to generate the cyclostationarity feature. The detection of the SC-FDMA

uplink signal with the proposed method is focused when the coexistence issues of

the UWB systems and the IMT-Advanced systems need to be dealt with. The

theoretical analysis has been given to indicate that the proposed scheme is low

computational complexity, especially when the target bandwidth is large. At the

cost of low complexity, the detection performance of the proposed scheme slightly

decreases shown in the simulation results. The proposed detection scheme also can

be considered as the substitute for the energy detection in DAA mechanism when

the transmission environment is not ideal.
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Chapter 3

Dual-stage Detection Scheme for

Ultra-Wideband Detect and

Avoid

3.1 Introduction

DAA is essential for UWB system to coexist with IMT-Advanced system, which

will be implemented and occupy 3.4∼3.6GHz band in the near future [9, 13]. The

3rd GPP LTE-Advanced system can fully reach or even surpass the requirements

on IMT-Advanced system within the ITU-R time plan [14, 15]. Therefore, the

LTE-Advanced system is supposed to be the victim system for UWB system and

the coexistence issues between these two systems should be investigated.

The coexistence issues between WiMAX system and UWB system have been

discussed in [17]. The detection of the transmitted signal of the victim system

is prerequisite for DAA. Comparing with WiMAX signal detection, the minimum

bandwidth of LTE-Advanced signal is narrower and more sophisticated detection

scheme is required. The SC-FDMA system has been selected as the uplink of

LTE-Advanced system. There are two main types of subcarrier mapping ways

in frequency domain, distributed mapping (or interleaved mapping) and localized

mapping [22]. In order to achieve high throughput and low system complexity, the

localized mapping scheme is only supported in 3GPP. The distribution feature of

the localized mapping way in frequency domain can be utilized by UWB systems

in DAA for the detection for SC-FDMA signal.

40



The energy detection scheme has been investigated in DAA [9]. ED is simple and

efficient, however, it suffers from noise uncertainty and cannot distinguish a signal

type [33]. CFD can differentiate the signal type in low signal-to-noise ratio (SNR)

[33] and reach better detection performance. However, the large computational

complexity is its limitation. Therefore, a dual-stage detection scheme combined

with ED and CFD is proposed, which hopefully utilizes the spectrum features

of the victim signal and conquers the limitations of ED and CFD. Moreover, a

tradeoff between the detection performance and the computational complexity

may be achieved.

Coarse detection (CD) and refined detection (RD) are two detection stages of

the proposed dual-stage detection scheme. CD is the first detection stage and

RD works as the second detection stage. CD initially senses the victim signal of

the target frequency band. When CD cannot provide a definite detection result,

the same signal samples saved in the detector will be check again by RD and

the final detection result will be determined. The advantages and limitations of

ED and CFD make them be the natural candidates for CD and RD, respectively.

To further reduce the complexity of the whole system and make full use of the

characteristics of the victim signal, the low-complexity cyclostationarity feature

detection approach (abbreviated to Low-complexity Spectrum Correlation Density,

LSCD) [44] is supposed to be utilized.

The two-stage (or two-step) detection schemes have been discussed in [55, 56]

and a bi-thresholds method has been proposed in [57]. [55] presents the performance

analysis based on detection time and [56] introduces an autoregressive (AR) model

in the analysis of two-step sensing scheme. [57] uses a sensing approach with a

double-threshold to decrease the transmission burden of sensing information. Dif-

ferent from the above schemes, this chapter focuses on the combination of two

detection stages with two different detection schemes by using the threshold factor

and the probability of indefinite detection (PID). The first stage of the detection

selects RBs that may be in use and the second stage checks the existence of the

LTE-Advanced signal with cyclostationarity detection. A tradeoff between the de-

tection performance and the computational complexity can be achieved by setting

PID.

In this chapter, the author propose a dual-stage detection scheme composed

of coarse detection stage and refined detection stage for the continuous detection
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Figure 3.1: SC-FDMA uplink system.

operation of UWB DAA. The threshold factor for the probability of indefinite

detection is first proposed and defined to combine the two stages.

The remainder of the chapter is organized as follows. Subsection 3.2 firstly

presents a coexistence model of UWB systems and LTE-Advanced systems, fol-

lowed by a simple introduction of the DAA mechanism. The SC-FDMA uplink

system is also introduced. The dual-stage detection scheme with CD and RD is

presented in Subsection 3.3. The definitions of the threshold factor and the prob-

ability of indefinite detection are also given in the same section. Subsection 3.4

shows the simulation results and the chapter is concluded in Subsection 3.5.

3.2 Coexistence Model and the SC-FDMA Uplink System

3.2.1 Coexistence Model of UWB system and LTE-Advanced system

In the coexistence model, the LTE-Advanced system is the victim system to the

UWB system. The transmission included downlink and uplink should be detected

and protected by UWB system with the DAA mechanism. In 3.4∼3.6GHz band,

LTE-Advanced system takes the TDD mode for the downlink and the uplink [16].

In this case, detecting the uplink is adequate since the downlink also uses the same

band. On the other hand, detecting the uplink is relatively easier than detecting

the downlink because the UWB device is closer to the UE than to the Base Station

(BS) [17]. Therefore, only SC-FDMA uplink system operating in the TDD mode
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is considered in this chapter.

In DAA, there are two types of detection operations, initial detection and con-

tinuous detection [9] [10]. The initial detection is used to sense the victim signal

of the target frequency band initially, and the continuous detection is utilized to

monitor regularly the target band. In the continuous detection operation, the sig-

nal level of the victim system is sensed continuously [9]. The proposed dual-stage

detection scheme can be utilized in the continuous detection operation in order to

reduce the computational complexity and improve the detection performance.

3.3 Proposed Dual-stage Detection Scheme with Thresh-

old Factor and Probability of indefinite detection

3.3.1 Dual-stage Detection Scheme for SC-FDMA Uplink Signal

In detection operation, ED working as CD tests the victim signal. When CD

cannot provide a definite result, RD is required to check the existence of the

cyclostationarity feature from the same victim signal samples. RD takes the LSCD

scheme and presents the last detection result.

Both ED and LSCD follow a binary hypothesis test. The test can be described

as,

H0 : y[n] = w[n],

H1 : y[n] =
P−1∑
p=0

h[p]x[p− n] + w[n],
(3.1)

where y[n], x[n] and w[n] are the n-th samples of the received signal, the transmit-

ted SC-FDMA signal and the additive white Gaussian noise (AWGN), respectively.

The channel type (AWGN or Multipath) is indicated by the factor h and the num-

ber of multipaths P . For the AWGN channel, the parameter P is set to be 1 and

only h[0] is calculated. For a multipath fading channel, h[p] is a complex random

variable denoting the channel fading on the p-th path. Two Rayleigh fading models

(JTC Indoor Office A and JTC Indoor Office B) are included in simulations [23].

Suppose that x[n], w[n] and h[p] are independent of one another. H1 indicates

the SC-FDMA uplink signal is present and the target frequency band is occupied

while H0 denotes that the target frequency band is empty.
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Figure 3.2: Test statistic of CD, the threshold factor ρ and the probability of indefinite detection

PID.

3.3.2 Coarse Detection Stage with Energy Detection Scheme

The energy detection presented in Section 1.2.2.5 can be used as the coarse detec-

tion.

In order to integrate the two detection stages, the threshold factor ρ and the

probability of indefinite detection PID are proposed. Figure 3.2 denotes their defi-

nitions. ρ is defined to be a small bidirectional shift, which can be calibrated with

the ratio of the given specific threshold γ. ρ changes the single threshold to an

interval γ → [γ − ρ, γ + ρ]. γ + ρ is the high threshold γCH and γ − ρ is the low

threshold γCL.

γCH = γ + ρ, (3.2)

and

γCL = γ − ρ. (3.3)

Note that both ρ beside the threshold γ are set to be equivalent for simplicity.

There should be other schemes such as choosing the same ”area” at each side of γ

under p (Dc;H1) to decide the threshold factor ρ.

When the detector of CD is greater than the high threshold DC > γCH, it means

that SC-FDMA uplink signal from the target frequency fragment is detected. If
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DC < γCL, it means that the target fragment is available. Otherwise, when γCH >

DC > γCL, it means that CD cannot present a definite result and RD will be

required.

The probability of indefinite detection is defined as

PID = Q

(
γ − ρ−N(η2σ2

x + σ2
w)√

2N(η2σ2
x + σ2

w)2

)
−

Q

(
γ + ρ−N(η2σ2

x + σ2
w)√

2N(η2σ2
x + σ2

w)2

)
. (3.4)

PID indicates the probability that CD locates in the threshold interval [γCL, γCH],

on the other hand, it also indicates the probability that the target frequency band

needs to be checked by RD.

Substituting Eq. (1.9) into Eq. (3.4) gives the expression of PID,

PID = Q

(
Q−1(PFA)−ρ/(ε

√
2N)−ε

√
N/2

ε+ 1

)
−

Q

(
Q−1(PFA)+ρ/(ε

√
2N)−ε

√
N/2

ε+ 1

)
, (3.5)

where Q−1 denotes the inverse complementary cumulative distribution function.

In Eq. (3.5), ε is defined as the signal-to-noise ratio (SNR),

ε =
η2σ2

x

σ2
w

. (3.6)

For the constant false alarm probability (CFAR) test, PID is mainly determined

by ρ under the conditions of the fixed number of samples N and the specific SNR

environment. Under such assumption, PID and ρ can determine mutually. For

a practical detection system, PID (or ρ) can be determined ahead according to

the signal level or the signal type of the victim signal. Those information can be

available in the continuous operation stage of DAA [9].

The probability of the coarse detection can be calculated by

PDC = Q

(
γ + ρ−N(η2σ2

x + σ2
w)√

2N(η2σ2
x + σ2

w)2

)

= Q

(
Q−1(PFA)−ρ/(ε

√
2N)−ε

√
N/2

ε+ 1

)
. (3.7)
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Table 3.1: System Parameters
Carrier frequency 3.5 GHz

Channel Bandwidth 10 MHz

Sampling frequency 15.36 MHz

DFT size (NDFT) 1024

Number of RB (NRB) 50

Subcarrier spacing 15 kHz

Number of subcarrier per RB (NSub) 12

Number of symbol per Slot (NSymb) 7

Slot duration 0.5 ms

Detection duration for LSCD and ED (NSlot) 2 Slots

Detection duration for CD and RD (NSlot) 1 Slot

Modulation type QPSK

SC-FDMA

Number of Cyclic prefix

for symbol 1 NCP1 80

Number of Cyclic prefix

for symbol 2-7 NCP2 72

probability of indefinite detection PID Eq. (3.5)

Note that, PFA is still for the whole detection process. PDC is obviously less than

PDE for the shift of the threshold. However, the refined detector will check the

‘suspicious’ sub-band and compensate the reduction.

3.3.3 Refined Detection Stage with Low-complexity Cyclostationarity

Feature Detection Scheme

The low-complexity cyclostationarity feature detection method (LSCD) proposed

in [44] works as RD. The cyclostationarity feature detector is denoted by the

accumulative sum of spectral correlation density (SCD) function [44] [27]. The

detector for the received SC-FDMA uplink signal in frequency domain can be

described as

D =
N−1∑
k=0

N−1∑
λ=−(N−1)

Y [k]·Y ∗[k + λ], (3.8)

where k and λ are the discrete frequency index and the discrete cyclic frequency

index, and N is the total number of subcarriers. Y [k] and Y ∗[k + λ] are the
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Table 3.2: Complexity Analysis
Probability of false alarm PFA 0.01

Signal-to-noise ratio SNR

-5 dB

0 dB

5 dB

Number of multiplication for CD NCD
1∗ 7168

Number of correlation for RD NRD
2∗ 23100

Number of multiplication for ED NED
3∗ 14336

Number of correlation for LSCD NLSCD
4∗ 46200

1∗NCD = NDFT ·NSymb ·NSlot

2∗NRD = C2
NSub

·NRB ·NSymb ·NSlot

3∗NED = NDFT ·NSymb · 2NSlot

4∗NLSCD = C2
NSub

·NRB ·NSymb · 2NSlot

Complexity of proposed scheme NDD =NCD+PID ·NRD

received SC-FDMA signal in frequency domain, and the symbol ∗ denotes complex

conjugate.

The LSCD can be defined as

DRBr
R =

NRB−1∑
k=0

(NSub−1)∑
λ=−(NSub−1)

Y [k +NSub · r] ·

Y ∗[k + λ+NSub · r]·Ψr[k, λ], (3.9)

where Ψr[k, λ] is a block window function for the r-th RB. The block window

function Ψr[k, λ] is determined by the spectrum feature of the victim signal and

can be defined as

Ψr[k, λ] =


1, (E[|X[k +NSub ·r]·
X∗[k + λ+NSub ·r]|] > 0)

0.(others)

(3.10)

The index of RB is r, r = 0, ..., NRB − 1. Here for all RBs, the following block

window function is employed

Ψ[k, λ] =

{
1, (k ∈ [0, ..., 11], (k + λ) ∈ [0, ..., 11])

0, (others).
(3.11)
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Figure 3.3: Complexity versus the ratio of the threshold factor to the threshold ρ/γ, with

PFA=0.01 and SNR=-5 dB, 0dB and 5 dB.

In a detection slot, the detector checks each of all NRB RBs and the maximum

of them will be the last result. Therefore, the result of RD is

DR = max
06r6NRB

∣∣DRBr
R

∣∣ , (3.12)

where the symbol || means that the amplitude of the detection and DRBr
R indicates

the detection result generated from the r-th RB.

The detection rule for RD is straightforward,

DR

H1

>

<
H0

γR, (3.13)

where γR denotes the detection threshold of RD.

The detection result of the whole detection scheme is defined as

PD = PDC + PDR, (3.14)

where PDR is the probability of detection ofRD. The proposed dual-stage detection

scheme can fulfill the varied detection requirements by setting different threshold

factor ρ.
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The computational complexity analyses of the proposed detection scheme and

the coming computer simulations both consider a practical 10MHz SC-FDMA

uplink system, with parameters given in Table 3.1 [20] [19] [18]. LSCD, DD and

ED are the abbreviations of the low-complexity cyclostationarity detection, the

proposed dual-stage detection and the energy detection, respectively.

Table 3.2 shows the computational complexities of the proposed scheme, com-

paring with those of ED and LSCD. The complexity is measured by the number of

multiplication operations. For CD (NCD) and ED (NED), the operations of multi-

plication are in time domain shown in Eq. (1.4). The multiplication operations of

RD (NRD) and LSCD (NLSCD) are in frequency domain shown in Eq. (3.8). The

computational complexities of such two operations can be regarded as the same for

each multiplication operation. The complexity of the proposed dual-stage scheme

(NDD) is calculated from NCD, NRD and the probability of indefinite detection PID.

The complexity of the proposed scheme is inherently determined by the threshold

factor ρ.

Figure 3.3 presents the complexities of the proposed dual-stage scheme, ED and

LSCD. The complexity of the proposed scheme is lower than that of LSCD. The

maximum complexity of DD with SNR=-5 dB almost is 70% of that of LSCD. The

complexity of DD decreases when SNR is large. It indicates that the complexity
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Figure 3.5: PDFs of DE under two hypotheses H0 and H1.

Table 3.3: Simulation Parameters
Number of active UE 1

Number of occupied RBs 3

SNR 0 ∼ 20 dB

Number of simulation trials 5000

Channel Model 1

Rayleigh Multipath Indoor Office A

RMS Delay Spread 35 ns

Number of Tap 3

Channel Model 2

Rayleigh Multipath Indoor Office B

RMS Delay Spread 100 ns

Number of Tap 6

of the proposed scheme can be reduced when the detection environment is good.

Figure 3.4 presents the relation between the threshold factor ρ and the prob-

ability of indefinite detection PID. ρ is calibrated with the ratio to the threshold

γ and the probability of false alarm (PFA) is set to be 0.01. This figure indicates

that PID is mainly determined by ρ, which has been also given in Eq. (3.5). It is

obvious that PID is more sensitive to ρ in a low SNR environment. PID can achieve

1 when ρ is the half of γ under the condition SNR of -5 dB. However, PID is 0.5

when SNR is almost equal to γ under the condition SNR of 5 dB. This figure also
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Figure 3.6: Probability of Detection (PD) vs. SNR (dB) ( Indoor Office A channel, for PFA = 0.01

and PID= 0.2, 0.5, and 0.8, No. of occupied RBs is 3).

indicates that the threshold factor ρ and the probability of indefinite detection PID

can determine each other.

Figure 3.5 shows the empirical PDF distributions of DE under two hypotheses

hypotheses H0 and H1, respectively, comparing with the theoretical Gaussian dis-

tributions using the same means and variances. SC-FDMA signal with parameters

shown in Table 3.1 is included in this simulation. SNR is 10 dB and 2 time slots

with 2×NDFT = 2048 samples in the time domain are utilized. The channel mode

is AWGN and the number of occupied RB is set to be 1 (12 subcarriers). This

figure verifies that energy detection approximately follows Gaussian distribution

very well.

3.4 Simulation Results

In computer simulation, the 10MHz SC-FDMA uplink system with parameters

shown in Table 3.1 is also included. Extra parameters (e.g., channel models) for

simulations are given in Table 3.3.

To evaluate the proposed scheme with fair comparisons, the detection periods

of LSCD and ED are set to be 2 time slots and those of CD and RD are set to be 1
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Figure 3.7: Probability of Detection (PD) vs. SNR (dB) ( Indoor Office B channel, for PFA = 0.01

and PID= 0.2, 0.5, and 0.8, No. of occupied RBs is 3).

time slot. The multipath Rayleigh channel models are Indoor Office A and Indoor

Office B [23]. Table 3.3 gives also main parameters of the JTC Indoor Office A

model and the JTC Indoor Office B model. The probability of indefinite detection

PID is utilized to indicate the threshold factor ρ. On the other hand, PID also

indicates the probability that the second detection stage is required.

Figures 3.6 and 3.7 denote the detection performances of LSCD, DD and ED

under two multipath indoor circumstances. PID is set to be 0.2, 0.5 and 0.8,

respectively. The probability of false alarm (PFA) is 0.01. The detection perfor-

mance of the proposed scheme achieves gradually that of LSCD with increasing

PID. These two figures indicate that the detection performance of the proposed

detection scheme can become controllable by setting varied PID. The detection

performances in Fig. 3.6 are better than those in Fig. 3.7, which indicates the

effect of different channel models.

The receiver operating characteristic (ROC) performances under two multipath

indoor circumstances are presented in Fig. 3.8 and Fig. 3.9 with 0 dB SNR. ROC

performances indicate the detection performance of the proposed scheme under

different PFA. The detection performance of dual-stage detection scheme with

PID = 0.8 can achieve 90% when PFA = 0.1 with 0 dB SNR shown in Fig. 3.8.
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0.8. The number of occupied RBs is 3 and SNR=0 dB.

In order to evaluate the detection performance in low PFA situations, Fig. 3.10

presents ROC performance of the proposed scheme in JTC Indoor Office A channel
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Figure 3.11: Effect of data rate on probability of Detection (Indoor Office B channel, for PFA =

0.01 and PID= 0.1.)

model. The probability of false alarm is set to from 0.01 to 0.09.

The detection performance is also affected by the data rate of SC-FDMA uplink
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signal, which is denoted by the number of the occupied Resource Blocks (RBs).

Note that the number of occupied RBs in both of the detection stages in the

proposed scheme is the same due to the refined detection will check the same signal

samples when the coarse detection cannot provide a definite detection result. The

maximum number of occupied RBs in a 10MHz SC-FDMA uplink system is 50.

Figure 3.11 shows the effects of different number of occupied RBs on the detection

performance. The numbers of occupied RBs are set to be 1, 3, 10, 25, and 50 of

total 50 RBs. This figure indicates that the detection performance of the proposed

scheme can increase fast when the number of occupied RBs changes from 1 to 10.

3.5 Conclusions of this chapter

The energy detection method and low-complexity cyclostationarity feature detec-

tion method are selected to be coarse detection and refined detection, respectively.

10MHz SC-FDMA uplink signal is utilized to evaluate the proposed scheme. The

dual-stage detection scheme with the threshold factor and the probability of in-

definite detection has been discussed in this chapter. The tradeoff between the

detection performance and the computational complexity can be achieved by set-

ting the parameter of the probability of indefinite detection.
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Chapter 4

Spectrum Sensing Algorithms via

Finite Random Matrices

4.1 Introduction

The ability to reliably detect the presence/absence of an unknown (and possibly

weak) signal emitted by a PU amidst AWGN is fundamental to allow future radio

systems to efficiently utilize bandwidth resources by temporarily occupying idle

frequency bands. This so-called spectrum sensing problem is therefore of major

importance in the field of wireless communications and at the core1 of the recent

cognitive radio paradigm [2,4, 58].

It has been recently shown that by relying on limiting distributions of the eigen-

values of Wishart random matrices, spectrum sensing algorithms exhibiting supe-

rior performance and robustness over conventional energy detection techniques can

be designed [36,41–43].

In [41], for instance, a couple methods utilizing properties of the eigenvalues

of K × N Wishart random matrices constructed from noisy input samples was

proposed. Specifically, the authors rely on the property that for K → ∞ and

N →∞ with a constant aspect ratio ρ , N/K, the eingenvalues of such (asymp-

totically large) matrices are known to follow the Marchenko-Pastur law [46], which

distinctively establishes that the largest (λK) and smallest (λ1) eigenvalues of large

matrices converge – under very mild assumptions on the statistics of the matrices’

1Recently a decision by the FCC deemed optional the use of spectrum sensing for unlicensed operation in the

TV Broadcast Bands (TV White Space). However, the feature remains under investigation as mandatory in other

parts of the world including Europe, Japan and China.
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entries themselves – to constants (λU and λL), determined by the signal and noise

powers, as well as the aspect ratio ρ.

Exploiting the relationship with the Marchenko-Pastur law, the authors in [41]

designed two Hypothesis Testing (HT) spectrum sensing methods, one based on

comparing λK against λU, and the other based on comparing the standard condi-

tion number (SCN) λK/λ1 to the ratio λU/λL. For convenience, we shall hereafter

refer to those techniques as Marchenko-Pastur (or MP, for short) methods.

An interesting characteristic of the latter random matrix theoretical (RMT)

method based on SCN’s is that no estimate of noise and/or signal power is required.

This blind feature is of interest since in situations where multiple wireless devices

share a crowded spectrum, background interference aggregate into AWGN [59]

with power dependent on the number of active users. A major limitation of the

MP approaches, however, is that the converge-rate [47] of the Marchenko-Pastur

law – which is of order O(K−
1
2 ) – is not fast enough to allow for accurate spectrum

sensing with a limited number of samples.

Rather than relying entirely on the Marchenko-Pastur deterministic SCN model,

in the RMT-based spectrum sensing method proposed in [36] the Tracy-Widom

distribution [48] was used as a statistical model for the largest eigenvalue [60]. Us-

ing both the Tracy-Widom (random nominator) and Marchenko-Pastur (constant

denominator) models, an approximate distribution of random SCN’s was built and

used to derive a relationship between a prescribed probability of false alarm α and

a test-threshold γ, which was then used for decision making.

The intuition is that the Tracy-Widom (TW) method in [36] is superior to that

in [41] under a smaller number of samples, since the random nature of SCN’s of

finite matrices is accounted for and the rate of convergence of the Tracy-Widom

law [61] – which is of order O(K−
2
3 ) – is faster than that of the MP-law. A direct

comparison of the MP and TW approaches was not provided in [36], but is given

in Fig. 4.1, which reveals (surprisingly) that the TW method outperforms the MP

alternative only at relatively large SNR’s.

This is due to the fact that the SCN is truly a ratio of two random variates,

such that the approximation implicit in the normalization of λK by λL, as done

in [36], is not sufficiently accurate unless λK is sufficiently large (which occurs at

larger SNR’s).
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Figure 4.1: PD Versus SNR. Probability of detection of spectrum sensing algorithms based on

finite random matrix (proposed) and asymptotic random matrix, as a function of the SNR and

the tolerated probability of false-alarm.

This issue was improved upon in [42,43], where Curtiss formula on the distribu-

tion of the ratio of random variates due to [50] was combined with a recent result

on the distribution of the smallest [62] and largest [63, 64] eigenvalues of Wishart

random matrices, leading to a more accurate model for their SCN’s for the case

when PU signal is present [65].

It can be seen from Fig. 4.1 that this method – which we dub Trace-Widom-

Curtiss (TWC) – indeed outperforms the latter two across a wide SNR range.

Unfortunately, the Tracy-Widom distribution [48, 49] and the Curtiss’ ratio-of-

variates formula [50] are highly involved functions which are hard to evaluate

numerically and intractable in mathematical analysis. Adding to (and in spite of)

this complexity challenge is the fact that all the aforementioned statistical models

are asymptotic and thus, not suitable (or ideal) for application to matrices of finite

and small sizes.

The preceding rationale aims to highlight the need for a new approach that

allows a substantial reduction in the number of samples required by RMT-based

spectrum sensing methods. In light of that, this chapter addresses the spectrum
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Figure 4.2: PD Versus PF. Probability of detection of spectrum sensing algorithms based on

finite random matrix (proposed) and asymptotic random matrix, as a function of the SNR and

the tolerated probability of false-alarm.

sensing problem from a finite RMT perspective. In particular, the author invokes

recent results on the exact distribution of standard condition numbers of dual

Wishart random matrices in order to design algorithms that require only a few

samples to function, and outperform all the RMT techniques currently known

under the constraint that the number of samples is finite.

The remainder of the chapter is as follows. In section 4.4, a summary of relevant

asymptotic models for the eigen-properties (eigenvalues, extreme eigenvalues and

standard condition number) of random Wishart matrices is given. The following

original results are also given: the Marchenko-Pastur CDF is derived in closed

form (Lemma 2); the asymptotic distribution of the eigenvalues of Wishart matri-

ces constructed from noisy samples of a random (Corollaries 1 and 2) and constant

(Lemma 3 and Corollary 3) PU signal, are given; and slightly simplified asymp-

totic expressions for the PDFs and/or CDFs of SNC’s of Wishart matrices based

on the Tracy-Widom-Curtiss formulas are given (Corollaries 7 and 5, Lemma 5

and Corollary 6). Finally, comparisons amongst the spectrum sensing algorithms

utilizing such models are also provided. In section 4.3, the recently discovered
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finite model for the SCN of Wishart matrices is introduced and the corresponding

spectrum sensing algorithms with basis on the H0 and H1 hypothesis are briefly

described. These algorithms are compared to those of asymptotic-RMT methods

and shown to outperform the latter.

A simple expression of the relationship between the false alarm and miss-

detection probabilities is also offered, based on which it is finally shown that blind

spectrum sensing with basis on the H0 test is superior to the H1 test at low SNR’s

and only marginally worse than the latter in the high SNR regime, which indicates

that H0 test is the best overall approach. Finally, concluding remarks are offered

in section 4.5

The distributions of the eigenvalues of complex Wishart matrix often arise in the

analysis and design of important communication techniques such as multiple-input

multiple-output (MIMO) systems [66–69] and cognitive radio systems [36,42,70].

Substantial literature exists on the CDF and PDF of the largest eigenvalue of

Wishart matrices. Asymptotic models for the extreme (largest and/or smallest)

eigenvalues of large matrices with a given aspect ratio can be found for instance

in [60, 62–64, 71]. Exact distributions of the eigenvalues of uncorrelated central

Wishart matrices of finite size have been presented in [72–74]. A counter-part for

the non-central case can also be found in [75].

In light of the result in [76], however, which establishes an accurate mapping

between Wishart non-central uncorrelated statistics and a central semi-correlated

equivalent, it is in most case sufficient to consider the simplest case of central

uncorrelated matrices.

To the best of our knowledge, the framework leading to the simplest expressions

for the extreme eigenvalues of Wishart matrices was introduced by James in [77]

and further developped by Edelman [78]. In a recent article [69], Dighe et al.

employed the James-Edelman framework to obtain closed-form algebraic PDFs of

the largest eigenvalue of central uncorrelated Wishart matrices of any finite size,

which are, for instance, far simpler than those in [66].

In this chapter, the PU detection problem from a finite RMT perspective is

discussed. Specifically, the recently-derived closed-form and exact expressions for

the distribution of the SCN of uncorrelated and semi-correlated random dual cen-

tral Wishart matrices of finite sizes in the design Hypothesis-Testing algorithms

to detect the presence of PU signals.
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I follow similar steps to obtain the corresponding CDF and PDF of the smallest

eigenvalues of central uncorrelated Wishart matrices of any size, which are more

convenient and general than existing alternatives, e.g., [68].

In comparison to alternative techniques based on asymptotic Random Matrix

Theory [36,41,42], the proposed method has the advantage that only a few samples

are sufficient to enable detection. As natural consequence of the fact that the

distributions of the extreme eigenvalues are closed-form and exact, for any given

matrix size, the proposed scheme outperforms all asymptotic approaches whenever

the number of samples is finite.

During the design of the cooperative detection scheme using RMT, main con-

tributions have been done as follows,

• the CDF of Marcheko-Pastur Law;

• the CDF of Tracy-Widom-Curtiss Law;

• exact PDF and CDF of extreme eigenvalues of finite central Wishart matrix.

4.2 Asymptotic Random Matrices Eigenspectrum and SCN

Models

4.2.1 Receive Samples Model

Consider the standard AWGN model for an i-th sample of baseband received signal

hi =
√
β · si + ni (4.1)

where β is the SNR, si is the PU signal2 including the effect of the channel, ni

are i.i.d. variates such that ni ∼ NC(0, 1) in which NC(0, 1) denotes the circularly

symmetric complex standard normal distribution and the symbol ∼ indicates that

the variates on the lefthand-side follow the distribution on the righthand-side.

Hereafter, si may be either an unknown arbitrary complex constant with |s| = 1,

which models the case when a single symbol of the PU over an AWGN channel

is observed, or i.i.d. variates si ∼ NC(0, 1), which models the case when the

PU signal is sampled subject to uncorrelated (fast) Rayleigh fading, and/or is

modulated within the received block of samples.

2For simplicity, we follow current literature (e.g. [36, 41, 58]) and focus on a single-PU analysis. However, the

technique to be described is general under H0 and can be extended to multi-channel scenarios under H1.
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It will prove convenient to define now the three hypothesis:

• H0 : s = 0, (no Primary User signal present);

• Hc
1 : s 6= 0, (constant Primary User signal present);

• Hr
1 : s 6= 0, (random Primary User signal present).

Following the model described by equation (4.1), if a number M = K × N of

samples is available, the receiver may build either of the following K ×N random

matrices

H =
1√
K


Hn if H0 is true (4.2a)

√
β ·Hs + Hn if H1 is true, (4.2b)

where Hn and Hs denote the received matrix with noise and signal, respectively.

Next, consider the Wishart matrix W , H · H†, where † denotes transpose-

conjugate (Hermitian). In the following subsections, we summarize several models

for the eigenspectrum and SCN’s of W with H given either as (4.2a) or (4.2b).

For clarity we shall denote the corresponding probability density functions (PDF’s)

and cumulative distribution functions (CDF’s) by p and P under H0, Hc
1 and Hr

1,

respectively.

Finally, without loss of generality3, all discussions hereafter are for the case

K 6 N such that W is full-rank.

4.2.2 Asymptotic Models for the Eigenspectrum Distribution

4.2.2.1 Under H0 - The Marchenko-Pastur Model

The Marchenko-Pastur law [46], which models the asymptotic eigenspectrum of

W under H0, can be concisely stated as follows.

Lemma 2 (Marchenko-Pastur CDF).

P
MP

(r; ρ),

r∫
λL

p
MP

(x; ρ)dx= 1
2
+p

MP
(r; ρ)+(1−ρ)

2π
asin

(
1+ρ
2
√
ρ
− (1−ρ)2

2r
√
ρ

)
+(1+ρ)

2π
asin

(
1+ρ
2
√
ρ
− r

2
√
ρ

)
.

(4.3)
3This avoids the unnecessary notational care to handle null eigenvalues.
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Proof : Let R , −r2 + 2(1 + ρ)r − (1− ρ)2. Then, it is clear from (A-1) that the

integral in equation (4.3) relates to [79, Eq. 2.267.1]

F (r) ,
∫ √

R

r
dr =

√
R + a

∫
dr

r
√
R

+
b

2

∫
dr√
R
, (4.4)

where a = −(1− ρ)2 < 0 and b = 2(1 + ρ) > 0.

The integrals on the righthand-side of equation (4.4) have closed-form solutions

found in [79, Eq. 2.266 and Eq. 2.261], respectively, which yield

I1(r; ρ) , a

∫
dr

r
√
R

= (1− ρ)·asin
(

(1+ρ)r−(1−ρ)2

2r
√
ρ

)
, (4.5)

I2(r; ρ) ,
b

2

∫
dr√
R

= −(1 + ρ)·asin
(

2(1+ρ)−2r
4
√
ρ

)
. (4.6)

Thus, from equations (A-1), (4.4), (4.5) and (4.6) we obtain

F (r) = p
MP

(r; ρ) + (1− ρ)·asin
(

(1+ρ)r−(1−ρ)2

2r
√
ρ

)
− (1 + ρ)·asin

(
2(1+ρ)−2r

4
√
ρ

)
, (4.7)

It follows that the Marchenko-Pastur CDF is given by

P
MP

(r; ρ) = 1
2π
F (r)− 1

2π
F (λL). (4.8)

Finally, notice that p
MP

(λL; ρ) = 0, I1(λL; ρ) = −π/2 and I2(λL; ρ) = π/2, such

that equation (4.8) reduces to equation (4.3) after some algebra.

4.2.2.2 Under H1 - The Scaled and Extended Marchenko-Pastur Models

The eigenspectrum distributions of W under H1 differs depending on whether the

PU signal is random or constant. In the first case, the following result applies.

Corollary 1 (Scaled Marchenko-Pastur PDF).

Let λ|Hr
1

denote any eigenvalue of W, with H as in equation (4.2b) and Hs ∼
NCK×N (0, 1). Then,

lim
(K,N)→∞
N/K=ρ>1

λ|Hr
1
∼ p(s)

MP
(r; ρ, β) ,

1

1 + β
· p

MP
(r/(1 + β); ρ). (4.9)

Proof : Since Hn ∼ NCK×N (0, 1), if Hs ∼ NCK×N (0, 1) then H ∼ NCK×N (0, 1 + β).

Consequently λ|Hr
1

behaves as (1 + β) · λ|H0
. In other words, λ|Hr

1
is equivalent

to a scaled MP-variate, with scaling coefficient (1 + β), which immediately yields

equation (4.9).

The distribution p(s)
MP

(r; ρ, β), which is clearly suitable to Rayleigh fading case,

will be henceforth referred to as the type-0 model for λ|Hr
1
.
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Corollary 2 (Scaled Marchenko-Pastur CDF).

P (s)
MP

(r; ρ, β) ,

r∫
0

p(s)
MP

(x; ρ, β)dx = 1
2π
F
(

r
1+β

)
+ 1

2
. (4.10)

Proof : The result follows immediately from Lemmas 2 and Corollary 1.

The distribution of λ|Hr
1

with a constant PU signal is governed by the following

result.

Lemma 3 (Extended Marchenko-Pastur PDF).

Let λ|Hc
1

denote any eigenvalue of W, with H as in equation (4.2b) and Hs =

s·1K×N , where 1K×N is a matrix whose elements are all 1’s, while s is an unknown

complex constant with |s| = 1. Then,

lim
(K,N)→∞
N/K=ρ>1

λ|Hc
1
∼ p(e)

MP
(r; ρ, β) , lim

(K,N)→∞
N/K=ρ>1

K − 1

K
p

MP
(r; ρ) +

δ(r −N · β)

K
, (4.11)

where δ(r) is the Dirac delta function and β > 0.

Proof : Start with the Law of Large numbers [80] which yields, under a constant

Hs and a zero-mean Hn, W = 1
K

(
√
β ·Hs + Hn) · (√β ·Hs + Hn)† = 1

K
(β ·Hs ·

H†s + Hn ·H†n).

Obviously the matrix β
K
·Hs ·H†s has a single non-zero eigenvalue given by N ·β,

while the eigenvalues of the matrix Wn , 1
K
·Hn ·H†n are MP-variates.

For convenience, let us denote the k-th largest eigenvalues of W and Wn re-

spectively by λk(W) and λk(Wn), such that 0 < λ1(W) 6 λ1(W) 6 · · · 6 λK(W)

and likewise 0 < λ1(Wn) 6 λ1(Wn) 6 · · · 6 λK(Wn).

Next, invoke the refined Wenyl bounds recently derived in [81, Eq. (2.3)], which

yield

λk(Wn) 6 λk(W) 6 λk+1(Wn), ∀ 1 6 k 6 K − 1. (4.12)

The latter bound indicates that the k-th eigenvalue of W is “trapped” between

the k-th and k+1-th eigenvalues of Wn, with probability 1 as K →∞. But it has

also been recently shown [82] that the mean gap between consecutive eigenvalues

of large K ×K random Hermitian matrices is given by 1/
√
K, and consequently

the implication of inequality (4.12) is that the distribution of the set of eigenvalues

{λ1(W), · · · , λK−1(W)} converges in probability to the distribution of the set

{λ1(Wn), · · · , λK(Wn)}, which is pλ(r; ρ), as per Theorem 4.
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It is left to show that the asymptotic distribution of λK(W) converges in prob-

ability to δ(r −N · β). To this end, invoke the recent result on the distribution of

spiked eigenvalues [83], from which the expected value of λK is given by

E[λK(W)] = 1
N ·β (N · β + 1)2 −→

N�1/β
N · β. (4.13)

Consequently,

lim
K→∞

λK(W)→ N · β, (4.14)

which means that the distribution of λK(W) is δ(r−N · β), concluding the proof.

Interpreting Lemma 3 requires care. First, as clarified in the Lemma’s state-

ment, the result requires that SNR is strictly non-zero. Otherwise we are obviously

in the case discussed in subsection 4.2.2.1. And secondly, the Lemma establishes

that for any β > 0, the largest eigenvalue of W converges, with probability 1, to

λK = N · β →∞ as the dimension K of W grows unboundedly.

What matters, however, is that in that the distributions of λ|H1
differ substan-

tially depending on whether the PU signal is random or constant. In particular, in

the latter case, Lemma 3 implies that there exists a pair critical values of β below

which the “constant” eigenvalue located at n · β falls inside the range (λL, λU).

Consequently, it can be expected that the presence of a constant PU signal with

SNR in the range
(1−√ρ)2

N
6 β 6

(1 +
√
ρ)2

N
, (4.15)

cannot be identified with basis on the eigenvalues of W.

For completeness, let us conclude this subsection with the following corollary.

Corollary 3 (Extended Marchenko-Pastur CDF).

P (e)
MP

(r; ρ, β) ,

r∫
0

p(e)
MP

(x; ρ, β)dx = lim
(K,N)→∞
N/K=ρ>1

K − 1

K
P

MP
(r; ρ) +

u(r −N · β)

K
, (4.16)

where u(r) is the unitary step function.

Proof : The result is an immediate consequence of Lemma 3.

4.2.3 Asymptotic Extreme-value Models for the Eigenspectrum Dis-

tribution

4.2.3.1 Under H1 - The Scaled and Extended Tracy-Widom Models

65



In this subsection we shall follow similar steps to those of the preceding subsec-

tion and give a summary of the asymptotic extreme value models for W originated

from sample matrices H constructed in the presence of PU signal, as defined in

equation (4.2b).

Corollary 4 (Scaled Tracy-Widom PDF and CDF).

Consider the centralized and normalized extreme eigenvalues of W , H·H† defined

below, with H as in equation (4.2b) and Hs ∼ NCK×N (0, 1),

λ̄K |Hr
1

,
λK − (1 + β)λU

(1 + β)ν
, (4.17)

λ̄1|Hr
1

,
λ1 − (1 + β)λL

(1 + β)µ
, (4.18)

where µ and ν are as given in Theorem 5.

Then

lim
(K,N)→∞
N/K=ρ>1

λ̄|Hr
1
∼ p

TW
(r) ,

dP
TW

(r)

dr
. (4.19)

Proof : The result is an immediate consequence of Corollary 1 and Theorem 5.

Lemma 4 (Extended Tracy-Widom PDF and CDF).

Let λK |Hc
1

denote the largest eigenvalue of W , H · H†, with H as in equation

(4.2b) and a constant Hs = s · 1K×N , where 1K×N is a matrix whose elements are

all 1’s, while s is an unknown complex constant with |s| = 1. Consider also the

centralized and normalized smallest eigenvalue of W defined by

λ̄1|Hc
1

,
λ1 − λL

µ
, (4.20)

where µ is as given in Theorem 5.

Then

lim
(K,N)→∞
N/K=ρ>1

λK |Hc
1
∼ δ(r −N · β), (4.21)

lim
(K,N)→∞
N/K=ρ>1

λ̄1|Hc
1
∼ p

TW
(r) ,

dP
TW

(r)

dr
. (4.22)

Proof : The result is an immediate consequence of Lemma 3 and Theorem 5.

4.2.4 Asymptotic Models for the Distribution of Standard Condition

Numbers

It has been recently noted [42] that an asymptotic model for the SCN’s of complex

Wishart matrices can be constructed with basis on the results of Theorem 5 and a
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general result on the distribution of the ratio of random variates due to Curtiss [50].

In this subsection we shall revise the results of [42] in light of the distinct

extreme-value distributions yielded under Hr
1 and Hc

1.

Before we proceed, let us point out that while the parameters K and N are,

rigorously speaking∞ since the results to follow are all asymptotic, the expressions

to be given are typically evaluated for finite (large) matrices. Consequently, for

the sake of clarity and coherence we shall commit a slight abuse of notation by

maintaining K and N , when application, in the formulas.

4.2.4.1 Under H1 - The Scaled and Extended Tracy-Widom-Curtiss Models

The scaled and extended TWC distributions are given as follows.

Corollary 5 (Scaled Tracy-Widom-Curtiss PDF and CDF).

Let ξK |Hr
1

denote the SCN of W , H · H†, with H constructed in the presence

of random PU signals as shown in equation (4.2b) with Hs ∼ NCK×N (0, 1). De-

note the largest and smallest eigenvalues of W in this case by λK |Hr
1

and λ1|Hr
1

respectively, such tha ξK |Hr
1
,
λK |Hr

1

λ1|Hr
1

. Then

ξK |Hr
1
∼ p

TWC
(r;µ, ν, λL, λU), (4.23)

and its CDF is the same as in equation (A-9).

Proof : First notice that under the same arguments of those in Corollary 1

λK |Hr
1

, (1 + β)λU, (4.24)

λ1|Hr
1

, (1 + β)λL. (4.25)

Then, since the scaling coefficients (1+β) cancel out, the results follow immediately

from Theorem 6 and Corollary 7.

Lemma 5 (Extended Tracy-Widom-Curtiss PDF (high SNR)).

Let ξK |Hc
1

,
λK |Hc

1

λ1|Hc
1

denote the SCN of W , H ·H† constructed in the presence of

a constant PU signal, that is, with H as in equation (4.2b) and a Hs = s · 1K×N ,

where 1K×N is a matrix whose elements are all 1’s, while s is an unknown complex

constant with |s| = 1. Furthermore, let the SNR ρ be sufficiently high such that4

4In [43, Eq.(61) and (62)] distributions of (rx − κ)
√
N/τ for the cases when λK 6 1 +

√
ρ−1 are also given,
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λK |Hc
1
> 1 +

√
ρ−1. Then,

ξK |Hc1 ∼ p(e)
TWC

(r; µ̃, ν̃, κ, τ) ,
N7/6

τ ν̃

∞∫
0

x·pGauss

(
(r·x−κ)

√
N

τ

)
·p

TW

(
(µ̃−x)N2/3

ν̃

)
dx,

(4.26)

where pGauss(r) is standard Normal distribution and5

µ̃ ,
(
√
N −

√
K − 1)

2

K
, (4.27)

ν̃ ,
(
√
N −

√
K − 1)

4/3

√
N · 6
√
K − 1

, (4.28)

κ ,
β + 1

β

(
β + ρ−1/2

)
, (4.29)

τ ,
β + 1

β

√
β2 − ρ−

1
2 . (4.30)

Proof : The standard normality of the scaled and normalized largest eigenvalue

of Wishart matrices constructed as indicated in the statement of the Lemma was

established in [64,71]. Specifically, it was shown thereby, with basis on the spiked

population model of [83], that under the condition λK |Hc
1
> 1 +

√
ρ−1,

lim
(K,N)→∞
N/K=ρ>1

1

τ
· (λK |Hc

1
− κ)N1/2 ∼ N (0, 1). (4.31)

Likewise, it has been shown in [48,62] that

lim
(K,N)→∞
N/K=ρ>1

1

ν̃
· (µ̃− λ1|Hc

1
)N2/3 ∼ pTW(r). (4.32)

The result in equation (4.26) then follows by applying Curtiss formula [50, Eq.

(3.2)].

Corollary 6 (Extended Tracy-Widom-Curtiss CDF).

P (e)
TWC

(r;κ, τ,µ̃,ν̃) =

∞∫
−N2/3·µ̃

ν̃

p
TW

(−x)·Q
(

1

τ
·
(
r·(µ̃+ ν̃

N2/3x)− κ
)√

N

)
dx, (4.33)

where Q is the Gaussian Q-function.

which if replaced for pGauss(r) would immediately lead to corresponding alternative distributions of ξK |Hc
1

in

the same form of equation (4.26). In the context of our chapter, however, these are unnecessary since it will be

ultimately shown that the finite random matrices models introduced in Section 4.3 are superior to the asymptotic

ones discussed here.

5In general, µ̃ and ν̃ can be defined as µ̃ , (
√
N−
√
K−U)

2

K
and ν̃ , (

√
N−
√
K−U)

4/3
√
N·6
√
K−U

, where U denotes the

number of PU’s, such that the result can be extended to multiple PU’s.
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Table 4.1: Asymptotic Random Matrix Models for Spectrum Sensing

Variable

All Eigenvalues: λ

Ext. Eigenvalues:

SCN: ξK

Signal Absent: H0 Signal Random: Hr1 Signal Constant:Hc1
PDF CDF PDF CDF PDF CDF

Theorem 4 Lemma 2 a Corollary 1 Corollary 2 a Lemma 3 a Corollary 3 a

Theorem 5 Corollary 4 Lemma 4

Theorem 6 Corollary 7 a Corollary 5 Lemma 5 a Corollary 6 a,b

a New result.
b For high SNR.

Proof : The result follows directly by integration of equation (4.26) from Lemma

5, with steps similar to those of the proof of Corollary 7.

4.2.5 Summary and Comments on Asymptotic-RMT Spectrum Sens-

ing Algorithms

In this subsection we summarize relevant results on asymptotic random matrices

and briefly discuss their application to spectrum sensing. For convenience, the

results of subsections 4.2.2 and 4.2.3 are gathered in Table 4.1.

The table also allows a quick identification of the new contributions made

thereby. Specifically, the closed-form expression of the Marchenko-Pastur CDF

given in Lemma 2; and the corresponding scaled variation given in Corollary 2

are new. So are the density and distribution of the eigenvalues of the sum of a

constant and a random Wishart matrix (i.e., the extended MP PDF and CDF)

given in Lemma 3 and Corollary 3. Likewise, the simplified expression of the CDF

of the SCN of Wishart matrices based on the Tracy-Widom extreme-value distri-

butions and the Curtiss formulas given in Corollary 7 as well as the extended TWC

PDF and CDF that model the case when a constant PU signal is present, given

respectively in Lemma 5 and Corollary 6, are minor, but novel contributions.

The key functions, such as CDF’s and parameters such as Test Statistic ζ and

Threshold γ, required to design Hypothesis Tests for spectrum sensing with basis

on the models described above given a prescribed probability of false-alarm α or

probability of miss-detection δ are summarized in Table 4.4.
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Table 4.2: Spectrum Sensing Algorithms from Random Matrix Theory

Method Test
Statistic ζ

Threshold γ CDF P (r) a

H
0

T
es

t

Marchenko
Pastur λK |H0

(1+
√
ρ)2

(1−√ρ)2
PMP(r)= 1

2 +pMP(r;ρ)+ (1−ρ)
2π asin

(
1+ρ
2
√
ρ
−(1−ρ)2

2r
√
ρ

)
+ (1+ρ)

2π asin
(

1+ρ
2
√
ρ
− r

2
√
ρ

)
Tracy

Widom λ̄K |H0
N+K+2

√
NK

N+K−2
√
NK
· PTW(r) = exp

(
−
∫∞
r

(x− r)q2(x)dx
)

1+
P−1

TW
(1−α)

3
√

(
√
N+
√
K)2
√
NK


Tracy

Widom
Curtiss

ξK |H0
P−1

TWC
(1− α) PTWC(r) =

∞∫
λL
µ

pTW(−z)·PTW

(
r·(λL−µ·z)−λU

ν

)
dz

Finite RMT
(Proposed) ξ2|H0

P−1
M

(1− α) PM (r) =
S2(r;N)− S2(1;N)

2(N − 1)!(N − 2)!
b

H
1

T
es

t

Extended
Tracy

Widom
Curtiss

ξK |Hc1 P (e)−1
TWC

(δ) P (e)
TWC

(r) =
∞∫

−µ̃
ν̃
N2/3

pTW(−x)·Q


(
r·(µ̃+ ν̃

N2/3 x)−κ
)√

N

τ

 dx

Finite RMT
(Proposed) ξ2|Hc1 P (e)−1

M
(δ) P (e)

M
(r) = Φ(N, θ1, θ2)(S4(r;N, θ1, θ2) − S4(1;N, θ1, θ2)) c

b For conciseness, a slight abuse of notation is committed by omitting the parameters of each distri-

bution
b See equations (4.36) through (4.37)
c See equations (4.41) and (4.42) through (4.44)

The corresponding functions and parameters required to design equivalent spec-

trum sensing algorithms with basis on the Finite Random Matrix models to be

discussed in Section 4.3 are also included for conciseness and future reference.

The performances of these algorithms are compared in Fig. 4.4 and Fig. 4.8.

All comparisons were evaluated via Monte-Carlo simulations assuming a con-

stant complex signal6 and random circular complex AWGN according to the model

shown in (4.2). Leaving aside the proposed method for the time being, it can be

seen that amongst the techniques relying on asymptotic random matrix models,

the TWC-based algorithms (e.g. [42, 43]) are generally superior to TW-based al-

gorithms (e.g. [36]), which in turn outperform MP-based algorithms (e.g. [41]).

The underperformance of the MP-based algorithm results from the inaccuracy

of the model with small sample sizes. To illustrate, the Marchenko-Pastur limiting

distribution is compared in Fig. 4.5 against exact equivalents introduced later in
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Figure 4.3: PD Versus SNR. Probability of Acquisition of spectrum sensing algorithms based

on finite random matrix (proposed), as a function of the SNR and the tolerated probability of

false-alarm.

Lemma 8.

The figure shows that the Marchenko-Pastur model is sufficiently accurate only

of the number of samples (K ×N) is in the order of thousands.

It must be noticed, however, that the densities and distribution functions given

in Theorem 6, Lemma 5 and Corollaries 7 and 6 are hard to evaluate, which is

in stark contrast with the simplicity of the classic Marchenko-Pastur models of

subsection 4.2.2. In other words, the improvement achieved by moving from MP-

based to TW-based to TWC-based methods comes at the expense of an increase

in complexity and a loss of mathematical tractability.

Nevertheless, an interesting connection between the MP-based technique pro-

posed in [41, Sec. III-B] and the TWC-based technique using SCN’s as proposed

in [42, 43], is that neither require the knowledge of noise power, although the

MP-based method has a fundamental limitation compared to the alternatives as it

does not admit a tolerated probability of false alarm to be accommodated in the

6Results for the case of random U signals are similar.
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Figure 4.4: PD Versus PF. Probability of Acquisition of spectrum sensing algorithms based

on finite random matrix (proposed), as a function of the SNR and the tolerated probability of

false-alarm.

hypothesis test.

This blind feature is highly desirable since in situations where multiple wireless

devices share a crowded spectrum, background noise levels vary with the number

of users accessing the channel.

Unfortunately, this potential advantage is undermined by the fact that all the

aforementioned methods require a large number of samples (large matrices), which

in turn implies (contradictorily) that an accurate estimate of the average noise

power can be obtained directly from the samples, with accuracy proportional to

their number!

In conclusion, it is reasonable to say that in order to truly exploit the potential of

random-matrix-theoretical approaches to blind spectrum sensing, novel techniques

requiring a limited number of samples is required. This is the subject of the

subsequent section.
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Scaled Marchenko-Pastur (SMP) Law and Bronk-Shin (SBS) Eigenvalue Distributions
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SMP: K →∞, N →∞
SBS: K = 20, N = 100
SBS: K = 10, N = 50
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Figure 4.5: The Marchenko-Pastur asymptotic model for the eigenvalues of random Wishart

matrices under H1 with a random PU signal, compared against corresponding exact distributions

given in Lemma 8 for a few finite random Wishart matrices.

4.3 Finite Random Matrices EigenSpectrum and SCN Mod-

els

4.3.1 Finite Models for SCN Distribution

4.3.1.1 Under H0 - Distribution of SCN of Finite Uncorrelated Central Wishart

Matrices

New results on the distribution of the SCN of finite complex random Wishart

matrices have been recently reported in [51]. Amongst others, the following closed-

form expressions for the distribution of the SCN of dual Wishart matrices are of

particular relevance here.

Theorem 2 (PDF and CDF for Uncorrelated Central Wishart Matrix (K = 2)).

Let ξ2|H0
, λ2|H0

/λ1|H0
> 1 denote the SCN of dual uncorrelated central Wishart

matrices W, with H as in equation (4.2a).
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Then

ξ2|H0
∼ p

M
(r;N) ,

S1(r;N)

2(N − 1)!(N − 2)!
, (4.34)

P
M

(r;N) =
S2(r;N)− S2(1;N)

2(N − 1)!(N − 2)!
, (4.35)

where

Si(r;N),∆i(r;N,N−1)− 2∆i(r;N−1,N) + ∆i(r;N−2,N+1), (4.36)

with i = {1, 2} and

∆1(r;M,N) ,
(N−1)!

(r + 1)2

[
N−1∑
n=0

(M + 1− n
r
)rn

(r+1)n

M∏
m=1

n+m

r + 1

]
.

∆2(r;M,N) , (N−1)!

[
M !− 1

r+1

N−1∑
n=0

rn

(r+1)n

M∏
m=1

n+m

r+1

]
.

Proof : Provided in [51].

4.3.1.2 Under H1 - Scaled and Extended SCN Distributions

The scaled and extended SCN distributions are given as follows.

Lemma 6 (Scaled SCN Model).

Let ξ2|Hr1 , λ2|Hr1/λ1|Hr1 > 1 denote the SCN of dual uncorrelated central

wishart matrices W, with H as in equation (4.2b) and Hs ∼ NCK×N (0, β). Then,

ξ2|Hr1 ∼ p
M

(r;N), (4.37)

Pr{ξ2|Hr1 6 r} = P
M

(r;N). (4.38)

Proof : Clearly λk|Hr1 follows the same distribution of λk|H0
– which incidentally

can be found in [66, 72, 84] scaled by (1 + β). Consequently, λ2|Hr1/λ1|Hr1 follows

the same distribution of λ2|H0
/λ1|H0

, concluding the proof.

Lemma 7 (Non-central and Semi-correlated Wishart Matrices).

Let W̃ = S̃·S̃† be a non-central Wishart matrix with S̃ ∈ CK×N , E[W̃] = IK/(β+1)
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and E[W̃ ·W̃] = Ω. Consider the central semi-correlated complex Wishart matrix

W = S · S† with S ∈ CK×N and effective covariance

ΣK =
IK
β + 1

+
β ·Ω

(β + 1)N
. (4.39)

Then, the first- and second-order moments of W differ from those of W̃ only

by Ω/N .

Proof : Provided in [76]

Lemma 7 presents a way to approximate the complex non-central Wishart ma-

trix with the complex semi-correlated central Wishart matrix. In light of this

result, the H1 test can be designed based on the properties of semi-correlated

central Wishart matrices.

Theorem 3 (PDF and CDF for Semi-Correlated Central Wishart Matrix (K = 2)).

Let ξ2|Hc1 , λ2|Hc1/λ1|Hc1 > 1 denote the SCN of dual semi-correlated central

Wishart matrices W , (Σ
1/2
2 H) · (Σ1/2

2 H)† with H as in equation (4.2a), where

Σ2, given in (4.39), is the associated correlation matrix and θ1 > θ2 are its corre-

sponding ordered eigenvalues. Then

ξ2|Hc1 ∼ p(e)
M

(r;N, θ1, θ2) ,
S3(r;N, θ1, θ2)

Φ(N, θ1, θ2)
, (4.40)

P (e)
M

(r;N, θ1, θ2) =
S4(r;N, θ1, θ2)− S4(1;N, θ1, θ2)

Φ(N, θ1, θ2)
, (4.41)

where

Φ(N, θ1, θ2) ,
(θ2 − θ1) · (N − 1)!(N − 2)!

(θ1 · θ2)1−N , (4.42)

and

Si(r;N, θ1, θ2) ,∆i

(
r;N−1,N−1,

1
θ1
,

1
θ2

)
−∆i

(
r;N−2,N,

1
θ1
,

1
θ2

)
−∆i

(
r;N−1,N−1,

1
θ2
,

1
θ1

)
+∆i

(
r;N−2,N,

1
θ2
,

1
θ1

)
,

(4.43)

with i = {3, 4} and

∆3(r;M,N, θ1, θ2)
(N−1)!

(r + θ2)m+2

[
N−1∑
n=0

(M + 1− n
r
)·(θ1 · r)n

(θ1 · r+θ2)n

M∏
m=1

(n+m)

]
,

∆4(r;M,N, θ1, θ2) ,
(N−1)!

θN1

[
M !

θM+1
2

− 1

(θ1 · r+θ2)M+1

N−1∑
n=0

(θ1 · r)n
(θ1 · r+θ2)n

M∏
m=1

(n+m)

]
.

Proof : Provided in [51].
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4.3.2 Summary and Comments on Finite-RMT Spectrum Sensing Al-

gorithms

The random matrix models discussed in section 4.3.1 are summarized in Table 4.3.

Unlike the asymptotic models given in sections 4.2.2, 4.2.3 and 4.2.4, the above

eigenspectrum and SCN distributions are exact.

First, notice that the close-form CDF expressions of Lemma 8, Lemma 8 and

Lemma 10, besides being hard to evaluate, if used to design spectrum-sensing

algorithms would inevitably lead to techniques that would fail at medium to low

SNRs. This is because in that range the eigenvalue associated with an eventual PU

signal is no longer the largest and therefore is “trapped” in between noise-related

eigenvalues, by force of the Wenyl inequality results [81, 82, Eq. (2.3)] invoked in

the proof of Lemma 3.

Finite random matrix theoretical spectrum sensing algorithms could likewise be

designed with basis on the extreme eigenvalue models lised in Table 4.3.

Table 4.3: Finite Random Matrix Models for Spectrum Sensing

Variable

All Eigenvalues: λ

Largest Eigenvalue: λK

Smallest Eigenvalue: λ1

SCN: ξK

PU Absent: H0 PU Random: Hr1 PU Constant: Hc1
PDF CDF PDF CDF PDF CDF

Lemma 8 a Lemma 8 a Lemma 10 a

[66, Eq.17]
[84, Eq.38]

[72, Eq.6]
[66, Eq.9]

[66, Eq.17]
[84, Eq.38]

b [72, Eq.6]
[66, Eq.9]

b [66, Eq.12]
[84, Eq.43]

[66, Eq.2]

[84, Eq.38] [84, Eq.47] [84, Eq.38] b [84, Eq.47] b [84, Eq.44] [84, Eq.97]

Theorem 2 Theorem 2 b Theorem 3

a CDF obtained by numerical integration from the PDF
b Obtained by scaling from the H0 distribution

Unfortunately, since these expressions are also very hard to evaluate, and by

force of the Wenyl inequalities [81,82, Eq. (2.3)], such approaches would be likewise

plagued by the same issues of computational complexity and poor performance at

medium to low SNRS observed in the asymptotic RMT-based approaches discussed

previously.

Furthermore, both eigenspectrum- and extreme eigenvalue-based techniques do

not have the blindness advantage of SCN-based alternatives.

Consequently, the most interesting approach is to rely on SCN models. Obvi-
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ously one could in principle employ the Curtiss formula [50] in combination with

the extreme-eigenvalue models offered in [66,72,84] (see Table 4.3) to obtain such

SCN models, but such an approach would clearly lead to cumbersome expressions.

Fortunately, Theorems 2 and 3 present exact and relatively simple PDF and

CDF expressions for finite random Wishart matrices that can be readily employed

in the design of spectrum-sensing algorithms. The required parameters for a Hy-

pothesis Test method equivalent to those discussed in subsection 4.2.5 are summa-

rized in Table 4.4.

For the H0 case, the finite-RMT spectrum sensing algorithm can be concisely

described as follows. Given a prescribed α and 2×N samples hkn:

1−Construct H , [hkn]k={1,2}×n={1,···N};

2−Compute the eigenvalues (λ1, λ2) of W , H ·H†;

3−Evaluate the ratio ξ2 , λ2/λ1;

4−Accept H0 if and only if ξ2 6 P
(0)
M

−1
(1− α).

Likewise, for the H1 case, given a prescribed δ and 2 × N samples hkn the H1

test can be summarized as

1−Construct H , [hkn]k={1,2}×n={1,···N};

2−Compute the eigenvalues (λ1, λ2) of W , H ·H†;

3−Evaluate the ratio ξ2 , λ2/λ1;

4−AcceptH1 if and only if ξ2 > P
(x)
M

−1
(δ), where x = s if the PU signal is random,

or x = e if the PU signal is constant7.

The performances of these algorithms are compared against those of the asymptotic-

RMT alternatives in Fig. 4.4.

First, in Fig. 4.1, the probability of detection of the RMT-based methods

over 20 samples are plotted against the signal-to-noise-ratio. It is found that

the proposed scheme based on Matthatiou et al.’s SCN CDF for finite random

Wishart matrices outperforms all the alternatives, exhibiting a 2 dB advantage

over the asymptotic Tracy-Widom-based method proposed in [36] – at the “high”

7Notice that in the absence of any knowledge on the PU signal, the assumption of a random signal leads to

conservative detection.
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SNR region around 0 dB – and several dB over the Marchenko-Pastur method at

the low SNR region.

Notice that the detection probability of all these methods improve(degrade)

if either the number of samples or the tolerated probability of false alarm in-

creases(decreases). In order to illustrate this effect, the algorithms are compared

in terms of their probability of detection as a function of the tolerated (prescribed)

probability of false alarm in Fig. 4.1.

The experiments were conducted for an SNR of 2 dB. Notice that results for

the Marchenko-Pastur method are not shown since this method does not allow for

any a priori estimate of the probability of false alarm.

It is found not only that the proposed finite RMT-based technique is consistently

superior to the alternatives, but also very consistent on its own, in so far as a

gradual degradation(improvement) is observed as the tolerated α or the number

of samples available for decision decrease(increase), while techniques relying on

asymptotic RMT results suffer from catastrophic degradation.

Results for the H1 test in terms of the probability of acquisition as a function

of the SNR are illustrated in Fig. 4.3. It can be seen, for instance, that with an

SNR of 4 dB a probability of acquisition of 96% under the constraint that the

probability of miss-detection is δ = 0.05 is achieved with only 20 samples. Only

the SNR information of PU signal is needed in the detection, which means the

proposed scheme is semi-blind.

The superiority of the finite-RMT methods are a direct consequence of the

accuracy of the models described by equations (4.34) and (4.40), as illustrated in

Fig. 4.6.

An additional advantage of the finite-RMT framework is that, since both ac-

curate and simple models for the SCN of finite Wishart matrices exist, it is easy

to draw a relationship between the probability of false-alarm α and probability of

miss-detection δ, namely

δ = P
(x)
M (PM

−1(1− α)), (4.44)

α = 1− P
M

(P (x)
M

−1
(δ)), (4.45)

where x = s if the PU signal is random, or x = e if the PU signal is constant.

These relations can be used to design H0 tests starting from a prescribed prob-

ability of miss-detection, as desired in cognitive-radio applications.
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SCN Distributions of Central Wishart Matrices
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Figure 4.6: PDF under H0. Probability density function of the SCN of uncorrelated and semi-

correlated (θ1 = 1, θ2 = 0.6) central dual Wishart random matrices and corresponding empirical

distributions of central and non-central dual Wishart random matrices.

Plots of α as a function of δ are shown in Fig. 4.8. For comparison purposes, the

relationship evaluated numerically using the asymptotic model is also shown. It

can be seen that great discrepancy is observed between the exact (finite-RMT) and

the approximate (asymptotic-RMT) approaches, further strengthening the point

made in this chapter.

Given these two alternative designs, a question could be asked as to which

approach is most effective. To be specific, staring from a prescribed probability of

miss-detection, and under a given SNR, should one employ an H1 test directly, or

convert δ to α and employ an H0 instead?

In order to answer (partly) this question, we perform the following experiment.

Let both α and δ take the same value – say, 3% or 10%.

Then, compare the two approaches in terms of the number of samples required

to achieve the complementary probabilities of detection PD and acquisition PA

– that is, 97% or 90%, respectively – as a function of the SNR. The detection

performances under the H0 and the H1 tests under such conditions are compared
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SCN Distributions of Non-central Wishart Matrices
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Figure 4.7: PDF under H1. Probability density function of the SCN of uncorrelated and semi-

correlated (θ1 = 1, θ2 = 0.6) central dual Wishart random matrices and corresponding empirical

distributions of central and non-central dual Wishart random matrices.

in Fig. 4.9.

It can be seen that, in general, at the low SNR regime the H0 test far is superior

than the H1 test. On the other hand, at high SNR’s, the H0 test is only marginally

inferior to the H1 test. In other words, this results supports the approach of always

(regardless of SNR) converting the tolerated probability of mis-detection δ into an

equivalent probability of false alarm α and employing H0, rather than employ the

H1 test over δ directly. This, in turn, further strengthens the relevance of the blind

approach advocated in this chapter.

4.4 CDF and PDF of Extreme Eigenvalues

Throughout the chapter upper and lower case boldface will be used to denote

matrices and vectors, respectively. The transpose conjugate and the determinant

operators are denoted by H and | · |, respectively, and the (i, j)-th entry of a matrix
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Definite False Alarm based on Miss Detection
(SNR = 2dB, K = 2)
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Figure 4.8: Relationship between the probability of false alarm α and the probability of miss-

detection δ under hypothesis tests based on the SCN’s of a finite (dual) random Wishart matrices

evaluated from exact and asymptotic (Tracy-Widom-Curtiss) models.

Y is denoted by yi,j.

Let Y denote a K × N random matrix with independent identical distributed

(i.i.d.) circularly symmetric complex Gaussian entries of zero mean and unit vari-

ance. The corresponding Wishart matrix W can then be defined as

W ,

{
YYH , K 6 N

YHY, K > N.
(4.46)

Without loss of generality, we shall hereafter consider only the case of K 6 N ,

and index the eigenvalues of W such that λ1 > · · ·>λK>0.

4.4.1 Distributions of Largest Eigenvalues

Here we briefly revise the James-Edelman framework, with the recent improvement

offered in [69], as employed to drive the CDF and PDF of λ1.
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Random Matrix Size (K ×N,K = 2) on Detection Performance
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Figure 4.9: Sample size K×N required byH1 test andH0 tests, to achieve the same performances

as a function of the SNR.

The joint PDF of the K ordered eigenvalues of W is given by [69,77]

fΛ(λ1, ..., λK)=
1

K!

K∏
i=1

λN−Ki exp (−λi)
(K − i)!(N − i)!

∏
16i<j6K

(λi − λj)2, (4.47)

where Λ , {λ1, ..., λK}.
The CDF of the largest eigenvalue λ1 can be obtained by integration of the joint

PDF in (4.47), i.e.

Fλ1(λ) =

λ∫
0

· · ·
λ∫

0

K∏
i=1

λN−Ki exp (−λi)
K!(K − i)!(N − i)! · |Ω| dλ1 · · · dλK , (4.48)

where Ω is the square Vandermonde matrix of
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{λ1, ..., λK}, such that

|Ω| ,

∣∣∣∣∣∣∣∣∣∣


1 · · · 1

λ1 · · · λK...
. . .

...

λK−1
1 · · · λK−1

K

·
 1 λ1 · · · λK−1

1...
...

. . .
...

1 λK · · · λK−1
K


∣∣∣∣∣∣∣∣∣∣

= (4.49)

∣∣∣∣∣∣∣∣∣∣∣

K · · · ∑K
i=1 λ

K−1
i∑K

i=1 λi · · ·
∑K

i=1 λ
K
i

...
. . .

...∑K
i=1 λ

K−1
i · · · ∑K

i=1 λ
2(K−1)
i

∣∣∣∣∣∣∣∣∣∣∣
=K!

∣∣∣∣∣∣∣∣∣∣
λ0

1 λ1 · · · λK−1
1

λ2 λ2
2 · · · λK2

...
...

...

λK−1
K λKK · · · λ2(K−1)

K

∣∣∣∣∣∣∣∣∣∣
where the last equality is due to the transformation given in [69, Appendix A].

Thanks to Dighe et al.’s result, the i-th row of the determinant depends only

on λi, such that equation (4.48) can be rewritten as

Fλ1(λ) =

λ∫
0

· · ·
λ∫

0

|Ω∗| dλ1 · · · dλK , (4.50)

where the (i, j)-th entry of Ω∗ is

ω∗i,j ,
λN+K+i+j−2
i exp (−λi)

K
√

∆
and ∆ ,

∏K
i=1 (K − i)!(N − i)!.

Recognizing the numerator of ω∗i,j as the integrand of the lower incomplete

Gamma function γ (N +K + i+ j − 1, λ), where γ (n+ 1, λ) ,
λ∫
0

xn exp (−x) dx,

and due to the independence of λi’s one obtains

Fλ1(λ) = |L (λ) |, (4.51)

where L (λ) is a Hankel matrix whose (i, j)-th entry element

is given by li,j(λ) , γ(N−K+i+j−1,λ)
K√∆

.

For an integer n and λ > 0, the lower incomplete gamma function can be

rewritten as

γ (n+ 1, λ) = n!

(
1− exp (−λ)

n∑
k=0

λk

k!

)
. (4.52)

Till now, each entry of L in (4.51) can be expressed as a finite polynomial of

the product of exponent and power series decided by the specific matrix size K
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and N . It is not difficult to calculate the determinant of (4.51) and express the

result in a closed-form polynomial.

We can consequently rewrite (4.51) in closed-form as

Fλ1(λ)=
K∑
i=0

exp(−iλ)

(N+K)i−2i2+1∑
m=1

[C(K,N)]i+1,mλ
m−1, (4.53)

where [C(K,N)](i+1),m is the (i+ 1,m)-th entry of the coefficient matrix C (K,N)

obtained from equation (4.51).

The interesting thing about the CDF of λ1 in the form given by equation (4.53)

is that the coefficients of the polynomial, generated from the determinant of L(λ)

and stored in the coefficient matrix C (K,N), can all be evaluated a priori and

tabulated.

Furthermore, we remark that equation (4.53) can be put in the following con-

venient form

Fλ1(λ)=
[
1 e−λ · · · e−Kλ

]
·C(K,N) ·


1
λ
...

λ
max

16i6K
(N+K)i−2i2

. (4.54)

The corresponding PDF is obtained by derivation, yielding

fλ1(λ)=
Fλ1(λ)

dλ
= (4.55)

K∑
i=1

exp (−iλ)

(N+K)i−2i2∑
m=N−K

[P(K,N)]i,m−(N−K−1)λ
m,

where [P(K,N)]i,m−(N−K−1) is the (i,m−(N−K−1))-th entry of the coefficient matrix

P (K,N) associated with C (K,N).

Again, equation (4.55) can be put in the form

fλ1(λ) =
[
e−λ · · · e−Kλ

]
·P(K,N) ·


λN−K

λN−K+1

...

λ
max

16i6K
(N+K)i−2i2

. (4.56)

4.4.2 Distributions of Smallest Eigenvalues

In order to obtain as simple expressions for the smallest eigenvalues using the

James-Edelman framework, start from the equivalent of equations (4.48) and (4.51)
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for λK , namely

FλK(λ)=1−
∞∫
λ

· · ·
∞∫
λ

K∏
i=1

λN−Ki exp (−λi)
K!(K−i)!(N−i)!×|Ω|dλ1 · · · dλK

= 1− |S (λ) |, (4.57)

where S is a K × K Hankel matrix whose (i, j)-th entry of is given by si,j =
Γ(N−K+i+j−1,λ)

K√∆
where Γ(n + 1, λ) is the upper incomplete gamma function Γ(n +

1, λ) ,
∞∫
λ

xn exp (−x) dx.

For an integer n and λ > 0 we may also write

Γ(n+ 1, λ) = n! exp(−λ)
n∑
k=1

λk

k!
, (4.58)

From which it follows that the CDF of λK finally becomes

FλK(λ)= 1−exp (−Kλ)
NK−K2+1∑

m=1

[c(K,N)]mλ
m−1, (4.59)

where [c(K,N)]m is the m-th entry of the coefficient vector obtained from equation

(4.57). Different from the coefficient matrix C[K,N ], c[K,N ] is a vector.

As before, the corresponding PDF obtained by derivation is

fλK(λ)=
dFλK (λ)

dλ
=− exp(−Kλ)

NK−K2∑
m=N−K

[p(K,N)]m−(N−K−1)λ
m, (4.60)

where [p(K,N)]m−(N−K−1) is the (m−(N−K−1))-th entry of the coefficient vector.

Finally, we remark that both equations (4.59) and (4.60) can be written respec-

tively as

FλK(λ) = 1− e−Kλ · c(K,N) ·


1
λ
...

λNK−K
2

, (4.61)

fλK(λ) = e−Kλ · p(K,N) ·


λN−K

λN−K+1

...

λNK−K
2

. (4.62)
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4.4.3 Illustrative Results for Extreme Eigenvalue Distributions

The coefficient matrices and vectors C(K,N), P(K,N), c(K,N) and p(K,N) re-

quired in equations (4.53), (4.55), (4.59) and (4.60) are easy to obtain for any

size (K,N) of the matrix Y composing the Wishart matrices under consideration.

Obviously, however, the cases for relatively small K and N are the ones of greater

interest, not only because asymptotic results [46] become increasingly satisfactory

as Kand N grow, but also because in the intended application of spectrum sensing,

it is desirable to maintain the number of samples required (given by K × N) as

small as possible. Some of such coefficient matrices/vectors are given below.

C(2, 3) =


1 0 0 0

−2 −2 1
2
−1

2

1 2 1
2

0

, (4.63a)

c (2, 3) =
[
−1 −2 −1

2

]
, (4.63b)

P(2, 3) =

[
3 −2 1

2

−3 −1 0

]
, (4.63c)

p(2, 3) =
[

3 1
]
. (4.63d)

C(3, 5) =


1 0 0 0 0 0 0 0 0

−3 −3 − 3
28

7
6
−23

24
5
24
− 1

48
0 0

3 6 6 2
3

1
3

1
3

1
9

1
72

1
288

−1 −3 −9
2
−17

6
−7

8
−1

8
− 1

144
0 0

, (4.64a)

c(3, 5) =
[
−1 −3 −9

2
−17

6
−7

6
−1

8
− 1

144

]
, (4.64b)

P(3, 5) =


5 −5 2 −1

3
1
48

0 0

−10 0 1 0 −1
8

0 − 1
144

5 5 2 1/3 1
48

0 0

, (4.64c)

p(3, 5) =
[

5 5 2 1
3

1
48

]
. (4.64d)
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C(4, 5) =



1 0 0 0 0 0 0 0 0 0 0

−4 −4 3− 17
3

71
24
− 7

8
17
144
− 1

144
0 0 0

6 12 −3 8 17
8
− 1

4
2
9
− 1

18
1
32
− 1

432
1

1728

−4−12 −3 −3 − 33
8
− 15

8
− 97

144
− 7

48
− 5

288
− 1

864
0

1 4 3 2
3

1
24

0 0 0 0 0 0


, (4.65)

c (4, 5) =
[
−1 −4 −3 − 2

3
− 1

24

]
, (4.66)

P(4, 5) =


10 −20 35

2
− 22

3
19
12
− 1

6
1

144
0 0 0

−30 30 − 15
2
− 11

2
11
6
− 5

6
13
36
− 1

12
1
96
− 1

864

30 0 − 15
2

3 19
12

1 43
144

1
24

1
288

0

−10 −10 − 5
2
− 1

6
0 0 0 0 0 0

, (4.67)

p(4, 5) =
[

10 10 5
2

1
6

]
. (4.68)

The CDF’s and PDF’s obtained through James-Edelman-Dighe framework de-

scribed in section 4.4.1 are given in Tables 4.5 and 4.6 for K = {2, 3, 4} and

N = {K, · · · , 7} (see last page of the chapter). Some of those analytical extreme

eigenvalue distributions are compared against corresponding empirical distribu-

tions in Fig. 4.10 and Fig. 4.11. The accuracy (exactness) can be appreciated.

Table 4.4: Spectrum Sensing Algorithms from Random Matrix Theory

Method Test Statistic ζ Threshold ζ∗ CDF F (λ)

Tracy-Widom λ̄1 = λ1−λU
ν

(√
N+
√
K√

N−
√
K

)2
·
(

1+ F−1(1−α)
3
√

(
√
N+
√
K)2
√
NK

)
Fλ̄1

(λ)

Tracy-Widom
-Curtis ξ̄K = λ̄1

λ̄K
F−1(1− α) Fξ̄K (ξ)

Proposed λ1 F−1(1− α) Fλ1(λ)

a Tolerated Probability of False Alarm: α
b Aspect Ratio of Random Matrices: ρ , N/K

4.4.4 Application to Spectrum Sensing

In this section the author employs the extreme eigenvalue distributions given above

to design Hypothesis-Test-based spectrum sensing algorithms that require a finite

number of samples. For comparison purposes, the author shall also consider two

asymptotic methods given in [36] and [42], respectively, which are briefly revised
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Figure 4.10: CDF. Distributions of extreme eigenvalues of finite Wishart matrices.

hereafter.

For convenience, the three algorithms to be compared are also summarized in

Table 4.4.

The methods proposed in [36] is henceforth referred to as the “Tracy-Widom”

(TC) method, as it relies on the asymptotic distribution of the normalized extreme

eigenvalues

λ̄1 ,
λ1 − λU

µ
, (4.69)

λ̄K ,
λK − λL

ν
, (4.70)

where λL , (1−
√
N/K)2, λU , (1 +

√
N/K)2 and

µ ,
(
√
N +

√
K)

4
3

6
√
KN

, (4.71)

ν , −(
√
N −

√
K)

4
3

6
√
KN

. (4.72)
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Figure 4.11: PDF. Distributions of extreme eigenvalues of finite Wishart matrices.

Both the quantities λ̄1 and λ̄K were shown in [60] and [62], respectively, to

follow the Tracy-Widom distribution

Fλ̄(λ) , exp

(
−
∫ ∞
λ

(x− r)q2(x)dx

)
, (4.73)

where q2(x) is the Hastings-McLeod solution of the Painlevé differential equation

of type II [48,49].

The algorithm proposed in [42], on the other hand relies on the normalized

standard condition number (SCN) defined as

ξ̄K ,
λ̄1

λ̄K
. (4.74)

The CDF of ξ̄1 can be obtained from the Tracy-Widom distribution by appli-

cation of the Curtiss formula [50]. Due to this approach, this algorithm is referred

here as the “Tracy-Widom-Curtiss” (TWC) method.

In possession of a given distribution, the spectrum sensing algorithms in ques-

tion can be summarized as follows

1−Collect K ×N base-band (complex) samples of the channel in to the matrix

Y;
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Figure 4.12: PD vs. SNR. Detection performances of spectrum sensing algorithms.

2−Compute the eigenvalues of the corresponding Wishart matrix as in equation

(4.46);

3−Obtain the test statistic ζ as follows:

- For TC-method: ζ , λ̄1 = λ1−λU

µ
;

- For TCW-method: ζ , ξ̄K = λ̄K
λ̄1

;

- For Proposed method: ζ , λ1;

4−Compare ζ against the threshold ζ∗ (see Table 4.4):

- Hypothesis H0 is true (channel is free) if ζ 6 ζ∗;

- Hypothesis H0 is false (channel is busy) otherwise.

The performances of the spectrum sensing algorithms described above are com-

pared against one another in Fig. 4.13. First, in Fig. 4.12, it can be seen that

if 21 samples are arranged with K = 3 and N = 7, the proposed scheme offers a

remarkable 6dB over the TWC, which is the best asymptotic method known thus
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Figure 4.13: PD vs. PF. Detection performances of spectrum sensing algorithms.

far (to the best of our knowledge). An even larger gain of about 7dB is observed

if only 10 samples is used, arranged with K = 2 and N = 5, although obviously

the performance of all algorithms degrade as the total number of samples per test

decreases.

Next, in Fig. 4.15, the algorithms are compared in terms of their Receiver

Operating Characteristic curves. Again, the superiority of the proposed method

over the asymptotic alternatives is evident. It is found in fact that with the Finite

Random Matrix method, as little as 21 samples suffice to obtain a Probability of

Detection of over 90%, with a negligible Probability of False-alarm.

To the best of our knowledge, there exists no Finite Random Matrix method we

could compare the proposed algorithm to, except for our own earlier contribution

[85], presented at Asilomar in 2010, which however has a limitation of admitting

only arrangements with K = 2. There is, however, an alternative method based

on the Anderson-Darling test [86], which however requires the calculation of a

threshold through a far more complex process. Interestingly, our method seems to

yield very similar results to the latter (compare for instance Fig. 4.15 against [86,
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Figure 4.14: TWC PD vs. SNR. Detection performances of spectrum sensing algorithms.

Fig. 1]), which is an indication that the two techniques are equivalent8. The lower

complexity of the FMT technique offered here, however, is to its advantage.

Furthermore, the FMT method has the potential of allowing the design of spec-

trum sensing algorithms operating on the distribution of the eigenvalues of Wishart

matrices constructed in the presence of PU signal – i.e, H1 – as we have illustrated

in [70]. A similar approach is rather unlikely under the Anderson-Darling frame-

work [86] due to the prohibitive complexity of deriving corresponding distributions

faced in that approach.

8A direct comparison will be offered at the Camera Ready version of the chapter.
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Figure 4.15: TWC PD vs. PF. Detection performances of spectrum sensing algorithms.
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4.5 Conclusions of this chapter

The author presented new blind spectrum sensing algorithms based on finite ran-

dom matrix theory. The algorithm utilizes recently-derived closed-form and exact

expressions for the CDF of the SCN of dual random Wishart matrices of finite

size, both uncorrelated central and semi-correlated central (which approximates

the non-central case). Based on these new models, hypothesis tests are formulated

around both the hypothesis H0 that no PU signal is present, and the hypothesis

H1 that a PU signal (random or constant) is present .

Similar to previous methods based on asymptotic RMT, the proposed algo-

rithms admits for either a tolerated probability of false alarm α or a probability of

miss-detection δ to be accounted for by design. Simple relationships between these

two design parameters were also provided. It was shown, however, that the new

finite-RMT algorithms not only outperforms known asymptotic-RMT alternatives,

but also that the blind approach of employing H0 tests is the best choice overall

(optimum at low SNR’s or nearly optimum in the high SNR regime).

In passing, a comprehensive account of all random matrix-theoretical models

relevant for the spectrum sensing applications if given, with several additional

(albeit it small) offered.
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Chapter 5

Overall Conclusions

In this dissertation, the author mainly discussed two kinds of signal detection

schemes such as non-cooperative detection and cooperative detection, relevant to

cognitive radio. Two non-cooperative detection schemes, low-complexity cyclo-

stationarity feature detection scheme and dual-stage detection scheme, have been

proposed to solve the coexistence issues between the UWB system and the IMT-

Advanced system. Such coexistence model can be regarded as a practical cognitive

radio prototype, in which the UWB system works as the secondary user system

operating DAA mechanism to avoid the harmful interference to the INT-Advanced

system being considered as the primary user system.

Low-complexity cyclostationarity feature detection scheme, discussing detailedly

in Chapter 2, presents a low computational complexity scheme based on the con-

ventional cyclostationarity feature detection scheme in order to reduce its heavy

computational complexity under the condition that there is only a slight reduction

on the detection performance.

This scheme is suitable for the detection of a localized SC-FDMA signal utilized

in the uplink of IMT-Advanced system. The computational complexity of the

proposed scheme is low, because that only one window width instead of all occupied

spectrum interval will be searched for the possible cyclic-spectrums. On the other

hand, the proposed scheme can also avoid the estimation of the cyclic-spectrums

when the type of PU signal is unclear or the cyclic-spectrums are hard to estimate.

Simulation results indicate that the proposed scheme can make a tradeoff be-

tween detection performance and computational complexity. The low-complexity

cyclostationarity feature detection also provides a substitute for the energy de-
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tection when the later approach suffers from the noise uncertainty and cannot

distinguish the target signal type.

Dual-stage detection scheme composed of coarse detection stage and refined

detection stage is given in Chapter 3. This scheme utilizes both advantages of

energy detection and cyclostationarity feature detection and tries to avoid their

limitations. In this scheme, energy detection works as the coarse detection stage

and the low-complexity cyclostationarity feature detection works as the refined

detection stage, respectively.

In order to combine such two detection stages, the threshold factor for the prob-

ability of indefinite detection was first proposed and defined. The proposed scheme

focuses on the integration of two different detection schemes with different com-

plexities in order to reduce total computational complexity. A Single-carrier Fre-

quency Division Multiple Access (SC-FDMA) uplink system operating in a TDD

mode is utilized to evaluate the proposed detection scheme. Simulation results

indicate that the proposed scheme can make a tradeoff between the detection per-

formance and the computational complexity by setting the probability of indefinite

detection.

Simulation results and theoretical analysis indicate that the proposed detection

scheme can make a tradeoff between the detection performance and the computa-

tional complexity by setting varied the probability of indefinite detection parame-

ter.

The author discussed the cooperative signal detection issues in Chapter 4, us-

ing random matrix theory. The author firstly includes the finite random matrix

theory to solve the signal detection problem. Comparing with the conventional

asymptotic random matrix theory schemes, our schemes can achieve better detec-

tion performance with less signal samples of the primary users. We also deduce

exact extreme eigenvalue of the Wishart matrix and construct a signal detection

scheme using the newly proposed exact extreme eigenvalue of the Wishart Matrix.

In particular, two algorithms are designed, with basis on the standard condition

number distribution in the absence of PU signals and in the presence of PU signals,

respectively.

Further attractive advantages of the new techniques are: a) due to the accu-

racy of the finite SCN distributions, superior performance is achieved under a finite

number of samples, compared to asymptotic RMT-based alternatives; b) since ex-
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pressions to model the SCN statistics both in the absence and presence of PU signal

are used, the statistics of the spectrum sensing problem in question is completely

characterized; and c) as a consequence of a) and b), accurate and simple analytical

expressions for the receiver operating characteristic (ROC) – both in terms of the

probability of detection as a function of the probability of false alarm (PD versus

PF) and in terms of the probability of acquisition as a function of the probability

of miss detection (PA versus PM) – are yielded. It is also shown that the proposed

finite RMT-based algorithms outperforms all similar alternatives currently known

in the literature, at a substantially lower complexity. In the process, several new

results on the distributions of eigenvalues and SCNs of random Wishart Matrices

are offered.
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Appendix

Asymptotic and Exact Random

Matrix Theories

In this Appendix, the asymptotic random matrix theories utilized as the conven-

tional cooperative signal detection schemes in [36, 41–43] and as the comparisons

to the proposed schemes using exact random matrix theories are presented.

The author also puts the exact and finite random matrix theories utilized in

the research.

Asymptotic Random Matrix Theories

Asymptotic Random Matrix Theories - The Marchenko-Pastur Model

The Marchenko-Pastur law [46], which models the asymptotic eigenspectrum of

W under H0, can be concisely stated as follows.

Theorem 4 (Marchenko-Pastur PDF).

Let λ|H0
denote any eigenvalue of W, with H as in equation (4.2a). Then,

lim
(K,N)→∞
N/K=ρ>1

λ|H0
∼ p

MP
(r; ρ) ,

√
−r2 + 2(1 + ρ)r − (1− ρ)2

2π ·x , (A-1)

with 0 < (1−√ρ)2 < r < (1 +
√
ρ)2.

Proof : Due to Marchenko and Pastur, provided in [87].

Implicit in the statement of Theorem 4 is the fact that λ is lower bounded by

λL , (1 − √ρ)2 and upper bounded by λU , (1 +
√
ρ)2. The Marchenko-Pastur

law is known to converge at the rate O(K−1/2) [47], which proves sufficiently fast
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to enable fairly accurate results to be derived in problems involving finite random

matrices of large, but still reasonably-sized, matrices [46].

Hereafter the author will use the term MP-variate to refer to a variate following

the Marchenko-Pastur Law. Notice also that, to the best of our knowledge, the

Marchenko-Pastur CDF is not available with a closed-form in current literature.

Asymptotic Random Matrix Theories - The Tracy-Widom Model

Theorem 5 (Tracy-Widom PDF and CDF).

Consider the centralized and normalized extreme eigenvalues of W , H·H† defined

below, with H as in equation (4.2a),

λ̄K |H0
,
λK − λU

ν
, (A-2)

λ̄1|H0
,
λ1 − λL

µ
, (A-3)

where

ν ,
(
√
N +

√
K)

4
3

K · 6
√
KN

, (A-4)

µ , −(
√
N −

√
K)

4
3

K · 6
√
KN

. (A-5)

For conciseness, let λ̄|H0
denote either λ̄K |H0

or λ̄1|H0
. Then1

lim
(K,N)→∞
N/K=ρ>1

λ̄|H0
∼ p

TW
(r) ,

dP
TW

(r)

dr
, (A-6)

P
TW

(r) , exp

(
−
∫ ∞
r

(x− r)q2(x)dx

)
, (A-7)

where q2(x) is the Hastings-McLeod solution of the Painlevé equation of type II

[48, 49].

Proof : Given in [60] for the largest, and [62] for the smallest eigenvalues, respec-

tively.

1For real Wishart matrices, a similar result holds, where PTW (r) ,

exp
(
− 1

2

∫∞
r q(x)dx

)
exp

(
−
∫∞
r (x− r)q2(x)dx

)
.
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Asymptotic Random Matrix Theories - The Tracy-Widom-Curtiss Model

Theorem 6 (Tracy-Widom-Curtiss PDF).

Let ξK |H0
denote the SCN of W , H ·H†, with H constructed in the absence PU

signals as indicated by equation (4.2a). Denote the largest and smallest eigenvalues

of W by λK |H0
and λ1|H0

respectively, and the SCN by ξK |H0
,

λK |H0

λ1|H0

. Then

ξK |H0
∼ p

TWC
(r;µ, ν, λL, λU) ,

−1

µ·ν

∞∫
0

x·p
TW

(
r·x− λU

ν

)
·p

TW

(
x− λL
µ

)
dx. (A-8)

where p
TW

(r) is as in equation, i.e., obtained by derivation of equation (A-6)).

Proof : The result follows from [50, Eq. (3.2)].

For Hypothesis Testing purposes the CDF is desirable, the following result is

thus in order.

Corollary 7 (Tracy-Widom-Curtiss CDF).

P
TWC

(r;µ, ν, λL, λU) =

∫ ∞
λL
µ

p
TW

(−x)·P
TW

(
r · (λL − µ · x)− λU

ν

)
dx. (A-9)

Proof : By definition (integration) of equation (A-8) we obtain, after interchanging

the order of integration and rearranging

P
TWC

(r;µ, ν, λL, λU) =
−1

µ

∞∫
0

p
TW

(
x− λL
µ

)
·

 r∫
−∞

x

ν
·p

TW

(
y ·x− λU

ν

)
· dy

 dx.

(A-10)

Under the change of variables y → y·x−λU
ν

, z, the integral within brackets

reduces to
∫ r·x−λU

ν
−∞ p

TW
(z) dz = P

TW

(
r·x−λU

ν

)
Substituting this result into equation

(A-10) yields

P
TWC

(r;µ, ν, λL, λU) =
−1

µ

∞∫
0

p
TW

(
x− λL
µ

)
·P

TW

(
r · x− λU

ν

)
dx. (A-11)

Through another change of variables x−λL
−µ → w and under the fact that µ < 0,

we finally arrive at equation (A-9).
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Exact Random Matrix Theories

Exact Finite Random Matrix Theories - The Eigenvalue Distribution

Model

The exact distribution of eigenvalues of uncorrelated central Wishart matrix has

been presented in [73] and [74].

Lemma 8 (Bronk-Shin-Lee PDF).

Let λ|H0
denote any eigenvalue of W, with H as in equation (4.2a). Then,

λ|H0
∼ p

BSL
(r;K,N) ,

1

K

K−1∑
k=0

k!·rN−K ·e−r
(N −K + k)!

[LN−Kk (r)]2, (A-12)

where Lba(x) is the Laguerre polynomial of order a,

Lba(x) =
a∑
l=0

(−1)l ·
(
a+ b

a− l

)
·x

l

l!
. (A-13)

Proof : Found in [73] and [74].

Lemma 9 (Scaled Bronk-Shin-Lee PDF).

Let λ|Hr1 denote any eigenvalue of W, with H as in equation (4.2b) and Hs ∼

NCK×N (0, β). Then,

λ|Hr1 ∼ p(s)
BS

(r;K,N, β) ,
1

1 + β
· p

BSL

(
r

1 + β
;K,N

)
. (A-14)

Proof: Follows immediately under arguments similar to those in the proof.

Lemma 10 (Extended Alfano PDF).

Let λ|Hc1 denote any eigenvalue of W, with H as in equation (4.2b) and a

Hs = s · 1K×N , where 1K×N is a matrix whose elements are all 1’s, while s is an
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unknown complex constant with |s| = 1. Then,

λ|Hc1 ∼ p
A
(r;K,N, β,φ) ,

exp(−φK)

K ·((N −K)!)K
· exp((β + 1) · r)

r
×

K∑
k=1

((β + 1)·r)N−K+k

φk−1
K

K−2∏
l=0

l!

·
[

0F1(N −K + 1, (β + 1)·φK ·r)
C−1
K,k

+
K−1∑
i=1

ri−1

〈N −K + 1〉i−1

·Ci,k
]
,

where φ = {φ1, · · · , φK} is the vector of squared singular values vector of Hs

in ascending order, 0F1(·) is the confluent hypergeometric function, the function

〈x〉y , (x+y−1)!
(x−1)!

, and Ci,j is the (i, j)-th cofactor of K×K matrix A, whose (`, k)-th

elements are defined as

a`,k ,



(N −K + k + `− 2)!

[N −K + 1]`−1

if 1 6 ` 6 K − 1, (A-15a)

0F1(N −K + k,N −K + 1, φ`)

((N −K + k − 1)!)−1
if ` = K. (A-15b)

Proof : Given in [75].
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